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ARTICLE INFO ABSTRACT

This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples
located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the
porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity
samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was
proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Gornitz
et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap
when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill
this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for
extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation
methods on synthetic data and provides a comparable result to the manual labored, time-consuming
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geostatistics approach on real data, proving its potential as a practical industrial tool.

1. Introduction

Porosity, the fraction of void space over the total rock volume, is a
key indicator for existence of a petroleum reservoir—void space can
store hydrocarbons (Schlumberger, 2015).

Porosity can be directly measured at wells once they are drilled but,
because of drilling costs, it is typically estimated from indirect sources
like seismic impedances obtained from reflections of sonic waves. Fig. 1
illustrates the porosity estimation problem, adapted from Castro et al.
(2005). The following three facts make accurate porosity estimation a
hard task:

1. Hidden structure governs the regression relationship:
porosity estimation typically relies on the inverse correlation be-
tween seismic impedance and porosity. However, the correlation
coefficients and offsets heavily depend on the sedimentary disconti-
nuities provided by distinct geological facies. It is known that
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porosity usually averages linearly and has low variability within
each facies (Deutsch, 2002). Therefore, once the facies structure is
known, porosities can be estimated from impedances by simple
linear regression methods. Nevertheless, facies estimation is an
intricate task, due to the many complex geometric shapes that can
co-exist in the reservoir.

. Seismic impedance alone is not informative for facies

estimation: one might hope that facies can be estimated from
the seismic impedance alone. The marginal distribution of the
impedance, however, does not give sufficient information for esti-
mating facies. This is illustrated in Fig. 1(d). Each point indicates the
impedance and the porosity at a location, and the color indicates the
facies (the lines connect neighboring locations). If we have no
information on the porosity, we have to estimate the facies only
from the impedance (x-axis), which is not very accurate due to the
overlapping marginal distribution of the impedance between two
facies.
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(d) Impedance vs. porosity

Fig. 1. Porosity estimation problem. The goal is to estimate (c) porosity (unknown at most of the locations) from (a) impedance (known) by using a linear relationship between them.
However, this relationship depends on the (b) facies (unknown), and accurate facies estimation requires porosity measurements because of the overlapped marginal distribution of the
impedance (d). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

3. Lack of labeled samples: the measurements of the porosity at
wells in the reservoir are used as labeled data, with which the
regression model is trained. If those labeled data are available
densely enough to capture the hidden facies structure, we can still
estimate porosity by using local regression models. However,
drilling a well is extremely costly and typically conducted only at
the locations where a petroleum reservoir is highly likely to exist.”
Thus, labeled samples are typically available only for a small number
of locations.

As a result, standard geostatistics approaches (Deutsch and Journel,
1998; Dubrule, 2003; Caers, 2005; Larsen et al., 2006) are manual
labor, time-consuming processes, demanding considerable expert
knowledge during design parameterization.

Fig. 1(d), on the other hand, also implies some hope to achieve
accurate porosity estimation. First, there is a clear separation between
the two facies in the joint space of impedance and porosity, i.e., the
joint distribution is not overlapping.® Second, the edges between
neighboring locations are sparse between the two facies, while dense
in each facies category, i.e., facies tend to be the same in neighboring
locations, as we can also observe in Fig. 1(b). These facts imply that we
could perform porosity estimation by optimally using the sparsely
available porosity information and propagating this information based
on the neighborhood spatial structure.

Motivated by this observation, recently a semi-supervised struc-
tural learning technique, called Transductive Conditional Random
Field Regression (TCRFR) (Gornitz et al., 2017), was proposed.
TCRFR is an extension of Conditional Random Field (CRF), a popular
graph-based machine learning techniques where known (or observed)
and unknown variables are expressed as nodes, and their probabilistic
dependencies are expressed as edges (a short introduction of CRF is
given in Appendix B). TCRFR can be used to estimate porosity from
impedance on seismic volumes conditioned on the porosity values
from the available wells in the reservoir. The method is able to infer
the hidden or latent states of geological facies by combining the local,
labeled and accurate porosity information in those wells with the
plentiful but imprecise impedance information available everywhere
in the reservoir volume. That accurate information is propagated in

2 This tendency of well locations can induce a bias (Deutsch, 2002)—the labeled data
are usually available only in high porosity regions, which results in biased statistics of
observed rock properties. However, the bias is not extreme if porosity samples are
available at regular intervals along the wells, which typically goes through low porosity
areas. Further improvement by adapting for this issue, called in statistics covariate shift
adaptation (Shimodaira, 2000; Sugiyama et al., 2007), is left as future work.

3 In real data, such clear separation is not always observed, but, in general, separation
is much easier in the joint space.
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the reservoir based on conditional random field probabilistic graphi-
cal models. The original TCRFR, applied to 2D time slices, presented
a good performance with 5% (impedance, porosity) pairs of labeled
data. Although accurate estimation from only 5% labeled data is a
notable achievement in machine learning, it is still a large number in a
real porosity estimation setting scenario, where only a few wells are
typically available in the reservoir. In this paper, we tackle the
problem of porosity estimation under realistic scenarios by refining
and specializing the original TCRFR method. More specifically, we
introduce two additional techniques, mainly inspired from the image
processing literature, to enhance the performance of TCRFR. The first
one is an extension of the original graph-based image segmentation
method proposed in Felzenszwalb and Huttenlocher (2004), using its
result to determine the neighboring graph structure. In other words,
we use the impedance spatial structure to determine how the label
information should propagate through the graph.

The second technique relies upon manual annotation of facies
categories. This procedure is based on a common assumption in image
segmentation, i.e., there are pixels that can be easily labeled by hand
for annotators (Boykov and Jolly, 2001). For example, annotating
pixels for the shale facies (blue colored in Fig. 1(b)) which are far from
the sand facies (yellow colored in Fig. 1(b)) is relatively easy for
geologists, and from this process we can establish a practical semi-
automatic porosity estimation. Additionally, we extend the original
TCRFR method to allow it to work with the 3D segmented data and
manually fixed facies.

Note that prediction of porosity and other reservoir variables has
also been addressed in several geophysics applications that, e.g.,
combine rock physics models with seismic inversion. Rock physics
fundamentals are described in Mukerji et al. (2001a, 2001b), Doyen
(2007), Mavko et al. (2009), Avseth et al. (2010). Petrophysical seismic
inversion formulations are depicted in Mukerji et al. (2001a, 2001b),
Gunning and Glinsky (2004), Eidsvik et al. (2004), Spikes et al. (2007),
Connolly and Hughes (2016). Gaussian mixture models for estimation
of reservoir variables from seismic inversion and rock physics is
presented in Grana and Rossa (2010). Lithology and fluid prediction
classification based on Markov chain models are described in Eidsvik
et al. (2002), Larsen et al. (2006). Also, joint inversion approaches for
lithology and elastic properties have been proposed by Sams et al.,
Doyen (2007), among others. In this paper, we focus on porosity
estimation from already inverted seismic impedance volumes and
sparse porosity samples located in a few exploratory wells, a typical
problem faced by geologists during the evaluation of a reservoir in the
exploration phase. Compared to the previous approaches, the proposed
method automates porosity prediction and facies classification, learn-
ing the model directly from the available data.
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