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A B S T R A C T

This paper presents a distributed approach that scales up to segment tree crowns within a LiDAR point cloud
representing an arbitrarily large forested area. The approach uses a single-processor tree segmentation
algorithm as a building block in order to process the data delivered in the shape of tiles in parallel. The
distributed processing is performed in a master-slave manner, in which the master maintains the global map of
the tiles and coordinates the slaves that segment tree crowns within and across the boundaries of the tiles. A
minimal bias was introduced to the number of detected trees because of trees lying across the tile boundaries,
which was quantified and adjusted for. Theoretical and experimental analyses of the runtime of the approach
revealed a near linear speedup. The estimated number of trees categorized by crown class and the associated
error margins as well as the height distribution of the detected trees aligned well with field estimations, verifying
that the distributed approach works correctly. The approach enables providing information of individual tree
locations and point cloud segments for a forest-level area in a timely manner, which can be used to create
detailed remotely sensed forest inventories. Although the approach was presented for tree segmentation within
LiDAR point clouds, the idea can also be generalized to scale up processing other big spatial datasets.

1. Introduction

Individual tree information is increasingly becoming the preferred
data precision level to accurately and efficiently monitor, assess, and
manage forest and natural resources (Chen et al., 2006; Koch et al.,
2006; Schardt et al., 2002). In the last two decades, airborne light
detection and ranging (LiDAR) technology has brought drastic changes
to forest data acquisition and management by providing inventory data
at unprecedented spatial and temporal resolutions (Ackermann, 1999;
Maltamo et al., 2014; Shao and Reynolds, 2006; Swatantran et al.,
2016; Wehr and Lohr, 1999). However, to obtain accurate tree level
attributes such as crown width and tree height as well as derivative
estimates such as diameter at breast height (DBH), volume, and
biomass, accurate and automated tree segmentation approaches are
required (Schardt et al., 2002).

Numerous methods for tree segmentation within LiDAR data have
been proposed (Duncanson et al., 2014; Hamraz et al., 2016; Hu et al.,
2014; Jing et al., 2012; Li et al., 2012; Persson et al., 2002; Popescu
and Wynne, 2004; Véga and Durrieu, 2011; Véga et al., 2014; Wang
et al., 2008). Nevertheless, these methods have only been experimented
for small forested areas and none of them have thoroughly considered

scalability; LiDAR data covering an entire forest is much more
voluminous than the memory of a typical workstation and may also
take an unacceptably long time to be sequentially processed. Also,
given the continuous advancements of the sensor technology
(Swatantran et al., 2016), the LiDAR point clouds will be acquired
with less costs and greater resolutions, which in turn increases the need
for more efficient and scalable processing schemes.

A few studies have considered processing LiDAR data (Thiemann
et al., 2013; Zhou and Neumann, 2009) using streaming algorithms
(Pajarola, 2005), where the spatial locality of the LiDAR data is used to
construct out-of-core algorithms. However, streaming algorithms are
unable to reduce the time required for processing because of their
inherently sequential processing scheme. A number of recent studies
have considered leveraging the power of multicore and/or GPU (shared
memory) platforms for processing LiDAR data for efficient DEM
modeling (Guan and Wu, 2010; Oryspayev et al., 2012; Sten et al.,
2016; Wu et al., 2011), or for 3D visualization (Bernardin et al., 2011;
Li et al., 2013; Mateo Lázaro et al., 2014), although shared-memory
platforms are also bounded in the amount of memory and the number
of processing units.

On the other hand, processing geospatial data such as LiDAR data
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can be parallelized by partitioning the data into tiles (commonly used
for data delivery purposes) and distributing the tiles to different
processors on a distributed architecture. Huang et al. (2011) proposed
a master-slave distributed method for parallelizing inverse distance
weighting interpolation algorithm. Guan et al. (2013) designed a cloud
-based process virtualization platform to process vast quantities of
LiDAR data. Barnes (2016) parallelized Priority-Flood depression-
filling algorithm by subdividing a DEM into tiles. However, the above
distributed approaches were designed and used for perfectly parallel
problems while, in case of non-perfectly parallel problems, dealing with
the data near the boundaries of the tiles is not trivial and should be
elaborated according to the specifics of the application (Werder and
Krüger, 2009).

Accounting for the data near the tile boundaries, a distributed
density-based clustering for spatial data (Ester et al., 1996) was
presented by Xu et al. (2002). The authors proposed a master-slave
scheme in which the master spawns a number of slaves to perform the
clustering and return the result back to the master, who then combines
the results. The scheme relies on a data placement strategy for load
balancing in which the master partitions the data and distributes the
portions among the slaves for processing, hence the runtime is
determined by the last slave that finishes its job. Distributing the data
and merging the results by the master are also sequential procedures
and may yield performance bottlenecks. A more recent work (He et al.,
2011) has presented a version of the density-based clustering tailored
to run on a MapReduce infrastructure (Dean and Ghemawat, 2008)
performing four stages of MapReduce for indexing, clustering, as well
as identifying and merging boundary data. The MapReduce infrastruc-
ture, although constraining the programming model, has the advantage
of built-in simplicity, scalability, and fault tolerance. Thiemann et al.
(2013) have presented a framework for distributed processing of
geospatial data, where partitioning the data to tiles with overlapping
areas near the borders is their core solution. The overlapping area
should be at least as big as the required neighborhood for processing a
local entity and the produced overlapping result may require special
treatment to be unified. The authors used the map phase of the Hadoop
MapReduce infrastructure (White, 2012) for clustering buildings of
large urban areas and the overlapping result was unified separately
afterwards.

Although there are various methods proposed for tree segmenta-
tion, only few studies have considered scalable processing of large
geospatial data – there is specifically no study considering forest-level
datasets. This is increasingly important when obtaining tree-level
information for areas other than small-scale plots, which is often the
case when obtaining LiDAR data. This paper presents and analyzes a
distributed approach that accounts for the data near the tile boundaries
and uses a tree segmentation algorithm as a building block in order to
efficiently segment trees from LiDAR point clouds representing an
entire forest. For experimentation, the approach was implemented
using message passing interface (MPI) (Walker, 1994).

2. Materials and methods

2.1. LiDAR data

We used LiDAR data acquired over the University of Kentucky
Robinson Forest (Lat. 37.4611, Long. −83.1555), which covers an
aggregated area of 7441.5 ha in the rugged eastern section of the
Cumberland Plateau region of southeastern Kentucky in Breathitt,
Perry, and Knott counties (37°28′23″N 83°08′36″W) (Overstreet,
1984). The LiDAR data is a combination of two datasets collected with
the same LiDAR system (Leica ALS60 at 200 kHz flown with an
average speed of 105 knots) by the same vendor. One dataset was
low density (~1.5 pt/m2) collected in the spring of 2013 during leaf-off
season (average altitude of 3096 m above the ground). The second
dataset was high density (~25 pt/m2) collected in the summer of 2013

during leaf-on season (average altitude of 196 m above the ground).
The combined dataset has a nominal pulse spacing (NPS) of 0.2 m and
was delivered in 801 square (304.8 m side ~ 9.3 ha area) tiles (Fig. 1),
each containing about 5 million LiDAR points on average and occupy-
ing about 400 MB of disk space. The entire LiDAR dataset contains
over 4 billion points and occupies 320 GB of disk space.

2.2. Distributed processing

In a distributed processing environment, the LiDAR data repre-
senting tree crowns located across tile boundaries is split into two or
more pieces that are processed by different processing units.
Identifying such crown pieces, unifying them, and efficiently managing
the distributed resources to run with a reasonable speedup are the
main challenges of a distributed approach. We propose a master-slave
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Fig. 1. LiDAR tile map of Robinson Forest consisting of 801 9.3-ha tiles.

Fig. 2. A schematic of a tile with the two types of boundary data. The solid-colored tree
crown pieces inside the tile should be unified with the corresponding stripe-colored parts
outside.
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