Author's Accepted Manuscript

OpenMP Parallelization of a Gridded SWAT (SWATG)

Ying Zhang, Jinliang Hou, Yongpan Cao, Juan Gu, Chunlin Huang

www.elsevier.com/locate/cageo

PII: S0098-3004(17)30092-4

DOI: http://dx.doi.org/10.1016/j.cageo.2017.08.002

Reference: CAGEO3999

To appear in: Computers and Geosciences

Received date: 22 January 2017 Revised date: 9 July 2017 Accepted date: 1 August 2017

Cite this article as: Ying Zhang, Jinliang Hou, Yongpan Cao, Juan Gu and Chunlin Huang, OpenMP Parallelization of a Gridded SWAT (SWATG), *Computers and Geosciences*, http://dx.doi.org/10.1016/j.cageo.2017.08.002

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

OpenMP Parallelization of a Gridded SWAT (SWATG)

Ying Zhang^{a,b}, Jinliang Hou^a, Yongpan Cao^{a,b}, Juan Gu^c, Chunlin Huang^{a, d}

^a Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

^bUniversity of Chinese Academy of Sciences, Beijing, 100101, China

^cKey Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China

^dJiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China

*Corresponding author: Chunlin Huang (huangcl@lzb.ac.cn)

Abstract

Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2,000 km² watershed with 1 CPU and a 15 thread

Download English Version:

https://daneshyari.com/en/article/4965360

Download Persian Version:

https://daneshyari.com/article/4965360

<u>Daneshyari.com</u>