
Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Performance prediction of finite-difference solvers for different computer
architectures

Mathias Louboutina,⁎, Michael Langeb, Felix J. Herrmanna, Navjot Kukrejab, Gerard Gormanb

a Seismic Laboratory for Imaging and Modeling (SLIM), The University of British Columbia, Canada
b Earth Science and Engineering Department, Imperial College, London, UK

A R T I C L E I N F O

Keywords:
Finite-differences
HPC
Modelling
Multi-physics
Performance
Wave-equation

A B S T R A C T

The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases:
the development of a stable numerical discretization; development of a correct (verified) implementation; and
the optimization of the implementation for different computer architectures. Often it is only after significant
time and effort has been invested that the performance bottlenecks of a PDE solver are fully understood, and the
precise details varies between different computer architectures. One way to mitigate this issue is to establish a
reliable performance model that allows a numerical analyst to make reliable predictions of how well a numerical
method would perform on a given computer architecture, before embarking upon potentially long and expensive
implementation and optimization phases. The availability of a reliable performance model also saves developer
effort as it both informs the developer on what kind of optimisations are beneficial, and when the maximum
expected performance has been reached and optimisation work should stop. We show how discretization of a
wave-equation can be theoretically studied to understand the performance limitations of the method on modern
computer architectures. We focus on the roofline model, now broadly used in the high-performance computing
community, which considers the achievable performance in terms of the peak memory bandwidth and peak
floating point performance of a computer with respect to algorithmic choices. A first principles analysis of
operational intensity for key time-stepping finite-difference algorithms is presented. With this information
available at the time of algorithm design, the expected performance on target computer systems can be used as a
driver for algorithm design.

1. Introduction

The increasing complexity of modern computer architectures
means that developers are having to work much harder at implement-
ing and optimising scientific modelling codes for the software perfor-
mance to keep pace with the increase in performance of the hardware.
This trend is driving a further specialisation in skills such that the
geophysicist, numerical analyst and software developer are increasingly
unlikely to be the same person. One problem this creates is that the
numerical analyst makes algorithmic choices at the mathematical level
that define the scope of possible software implementations and optimi-
sations available to the software developer. Additionally, even for an
expert software developer it can be difficult to know what are the right
kind of optimisations that should be considered, or even when an
implementation is ”good enough” and optimisation work should stop.
It is common that performance results are presented relative to a
previously existing implementation, but such a relative measure of
performance is wholly inadequate as the reference implementation

might well be truly terrible. One way to mitigate this issue is to
establish a reliable performance model that allows a numerical analyst
to make reliable predictions of how well a numerical method would
perform on a given computer architecture, before embarking upon
potentially long and expensive implementation and optimization
phases. The availability of a reliable performance model also saves
developer effort as it both informs the developer on what kind of
optimisations are beneficial, and when the maximum expected perfor-
mance has been reached and optimisation work should stop.

Performance models such as the roofline model by Williams et al.
(2009) help establish statistics for best case performance — to evaluate
the performance of a code in terms of hardware utilization (e.g.
percentage of peak floating point performance) instead of a relative
speed-up. Performance models that establish algorithmic optimality
and provide a measure of hardware utilization are increasingly used to
determine effective algorithmic changes that reliably increase perfor-
mance across a wide variety of algorithms (Asanovic et al., 2006).
However, for many scientific codes used in practice, wholesale algo-

http://dx.doi.org/10.1016/j.cageo.2017.04.014
Received 16 September 2016; Received in revised form 18 April 2017; Accepted 26 April 2017

⁎ Corresponding author.
E-mail address: mloubout@eos.ubc.ca (M. Louboutin).

Computers & Geosciences 105 (2017) 148–157

Available online 18 May 2017
0098-3004/ © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.04.014
http://dx.doi.org/10.1016/j.cageo.2017.04.014
http://dx.doi.org/10.1016/j.cageo.2017.04.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.04.014&domain=pdf

rithmic changes, such as changing the spatial discretization or the
governing equations themselves, are often highly invasive and require a
costly software re-write. Establishing a detailed and predictive perfor-
mance model for the various algorithmic choices is therefore impera-
tive when designing the next-generation of industry scale codes.

We establish a theoretical performance model for explicit wave-
equation solvers as used in full waveform inversion (FWI) and reverse
time migration (RTM). We focus on a set of widely used equations and
establish lower bounds on the degree of the spatial discretization
required to achieve optimal hardware utilization on a set of well known
modern computer architectures. Our theoretical prediction of perfor-
mance limitations may then be used to inform algorithmic choice of
future implementations and provides an absolute measure of realizable
performance against which implementations may be compared to
demonstrate their computational efficiency.

For the purpose of this paper we will only consider explicit time
stepping algorithms based on a second order time discretization.
Extension to higher order time stepping scheme will be briefly
discussed at the end. The reason we only consider explicit time
stepping is that it does not involve any matrix inversion, but only
scalar product and additions making the theoretical computation of the
performance bounds possible. The performance of other classical
algorithm such as matrix vector products or FFT as described by
(Patterson and Hennessy, 2007) has been included for illustrative
purposes.

2. Introduction to stencil computation

A stencil algorithm is designed to update or compute the value of a
field in one spatial location according to the neighbouring ones. In the
context of wave-equation solver, the stencil is defined by the support
(grid locations) and the coefficients of the finite-difference scheme. We
illustrate the stencil for the Laplacian, defining the stencil of the
acoustic wave-equation (Eq. (A.1)), and for the rotated Laplacian used
in the anisotropic wave-equation Eqs. (A.3), (A.4) on Figs. 1–2. The
points coloured in blue are the value loaded while the point coloured in
red correspond to a written value.

The implementation of a time stepping algorithm for a wavefield u,
solution of the acoustic wave-equation (Eq. (A.1)) is straightforward
from the representation of the stencil. We do not include the absorbing
boundary conditions (ABC) as depending on the choice of implementa-
tion it will either be part of the stencil or be decoupled and treated
separately.

Algorithm 1. Time-stepping

for t = 0 to t n= t do
for x y z X Y Z(, ,) ∈ (, ,) do

∑
u t x y z u t x y z u t x y z

a u t x y z

(, , ,) = 2 (− 1, , ,) − (− 2, , ,)

+ (− 1, , ,)
i stencil

i i i i
∈

end for
Add Source: u t u t q(,.,.,.) = (,.,.,.) +

end for

In Algorithm 1, X Y Z(, ,) is the set of all grid positions in the
computational domain, x y z(, ,) are the local indices, x y z(, ,)i i i are the
indices of the stencil positions for the centre position x y z(, ,) and nt is
the number of time steps and q is the source term decoupled from the
stencil. In the following we will concentrate on the stencil itself, as the
loops in space and time do not impact the theoretical performance
model we introduce. The roofline model is solely based on the amount
of input/output (blue/red in the stencils) and arithmetic operations
(number of sums and multiplication) required to update one grid point,
and we will prove that the optimal reference performance is indepen-

dent of the size of the domain (number of grid points) and of the
number of time steps.

Notes on parallelization:
Using a parallel framework to improve an existing code is one of the

most used tool in the current stencil computation community. It is
however crucial to understand that this is not an algorithmic improve-
ment from the operational intensity. We will prove that the algorithmic
efficiency of a stencil code is independent of the size of the model, and
will therefore not be impacted by a domain-decomposition like
parallelization via OpenMP or MPI. The results shown in the following
are purely dedicated to help the design of a code from an algorithmic
point of view, while parallelization will only impact the performance of
the implemented code by improving the hardware usage.

3. Roofline performance analysis

The roofline model is a performance analysis framework designed
to evaluate the floating point performance of an algorithm by relating it
to memory bandwidth usage (Williams et al., 2009). It has proved to be
very popular because it provides a readily comprehensible performance
metric to interpret runtime performance of a particular implementa-
tion according to the achievable optimal hardware utilization for a
given architecture (Williams and Patterson, 2008). This model has
been applied to real-life codes in the past to analyze and report
performance including oceanic climate models Epicoco et al. (2014),
combustion modelling Chan et al. (2013) and even seismic imaging
(Andreolli et al., 2014). It has also been used to evaluate the
effectiveness of implementation-time optimisations like autotuning
(Datta and Yelick, 2009), or cache-blocking on specific hardware
platforms like vector processors (Sato et al., 2009) and GPUs (Kim
et al., 2011). Tools are available to plot the machine-specific para-
meters of the roofline model automatically (Lo et al., 2014). When
more information about the target hardware is available, it is possible
to refine the roofline model into the cache-aware roofline model which
gives more accurate predictions of performance (Ilic et al., 2014). The
analysis presented here can be extended to the cache-aware roofline
model but in order to keep it general, we restrict it to the general
roofline model.

The roofline model has also been used to compare different types of
basic numerical operations to predict their performance and feasibility
on future systems (Barba and Yokota, 2013), quite similar to this
paper. However, in this paper, instead of comparing stencil computa-
tion to other numerical methods, we carry out a similar comparison
between numerical implementations using different stencil sizes. This
provides an upper-bound of performance on any hardware platform at
a purely conceptual stage, long before the implementation of the
algorithm.

Other theoretical models to predict upper-bound performance of
generic code on hypothetical hardware have been built (Lai and Seznec,
2013; Wahib and Maruyama, 2014; Hofmann et al., 2015a; Duplyakin
et al., 2016) but being too broad in scope, can not be used to drive
algorithmic choice like choosing the right discretization order. Some of
these models have also been applied to stencil codes (Stengel et al.,
2015; Datta et al., 2009), however the analysis was of a specific
implementation and could not be applied in general. There are many
tools to perform performance prediction at the code-level (Hammer
et al., 2015; Narayanan et al., 2010; Unat et al., 2015; Rahman et al.,
2011). However, any tool that predicts performance based on a code is
analyzing the implementation and not the algorithm in general.
Although performance modelling is a deep and mature field, most
work is restricted to modelling the performance of specific implemen-
tations in code. Hofmann et al. (2015b) makes a comparison quite
similar to the one we do here where two algorithmic choices for the
same problem are being compared with a performance model.

In this section we demonstrate how one creates a roofline model for
a given computer architecture, and derives the operational intensity for

M. Louboutin et al. Computers & Geosciences 105 (2017) 148–157

149

Download English Version:

https://daneshyari.com/en/article/4965385

Download Persian Version:

https://daneshyari.com/article/4965385

Daneshyari.com

https://daneshyari.com/en/article/4965385
https://daneshyari.com/article/4965385
https://daneshyari.com

