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A B S T R A C T

3D finite-element (FE) mesh generation is a major hurdle for marine controlled-source electromagnetic (CSEM)
modeling. In this paper, we present a FE discretization operator (FEDO) that automatically converts a 3D finite-
difference (FD) model into reliable and efficient tetrahedral FE meshes for CSEM modeling. FEDO sets up
wireframes of a background seabed model that precisely honors the seafloor topography. The wireframes are
then partitioned into multiple regions. Outer regions of the wireframes are discretized with coarse tetrahedral
elements whose maximum size is as large as a skin depth of the regions. We demonstrate that such coarse
meshes can produce accurate FE solutions because numerical dispersion errors of tetrahedral meshes do not
accumulate but oscillates. In contrast, central regions of the wireframes are discretized with fine tetrahedral
elements to describe complex geology in detail. The conductivity distribution is mapped from FD to FE meshes
in a volume-averaged sense. To avoid excessive mesh refinement around receivers, we introduce an effective
receiver size. Major advantages of FEDO are summarized as follow. First, FEDO automatically generates reliable
and economic tetrahedral FE meshes without adaptive meshing or interactive CAD workflows. Second, FEDO
produces FE meshes that precisely honor the boundaries of the seafloor topography. Third, FEDO derives
multiple sets of FE meshes from a given FD model. Each FE mesh is optimized for a different set of sources and
receivers and is fed to a subgroup of processors on a parallel computer. This divide and conquer approach
improves the parallel scalability of the FE solution. Both accuracy and effectiveness of FEDO are demonstrated
with various CSEM examples.

1. Introduction

In the past decade, 3D finite-element (FE) solutions have been
widely used in marine controlled-source electromagnetic (CSEM)
modeling (e.g. Key and Ovall, 2011; Schwarzbach et al., 2011). In
contrast to finite-difference (FD) solutions that approximate non-
coordinate-conforming structures with small rectangular stair steps,
FE uses geometry-conforming tetrahedral meshes and precisely repre-
sents complex seafloor topography.

However, the advantage of FE over FD comes with extra complica-
tion. It is considered difficult to iteratively solve a system of FE
equations. A system matrix with tetrahedra is unstructured and not
diagonally dominant. A simple Jacobi preconditioner used in FD
solutions does not ensure convergence of FE Krylov solutions. FE
solutions require numerically expensive preconditioners such as in-
complete factorization (Um et al., 2013) and others. It is also difficult to

find a robust preconditioner suitable to a wide range of EM problems.
Accordingly, direct solvers are often the method of choice for FE
solutions despite their large memory requirements and low parallel
scalabilities (Fu et al., 2015).

It is also considered difficult and time-consuming to create 3D FE
meshes. 3D FE mesh generation requires good literacy in computer-
aided design (CAD) software that may have a steep learning curve. To
mitigate the difficulty, adaptive FE methods have been introduced (Li
and Key, 2007; Key and Ovall, 2011; Schwarzbach et al., 2011). They
start with coarse meshes and successively refine meshes until a
required tolerance is met. However, in either use of interactive CAD
or automated adaptive refinement methods, it is nontrivial to generate
reliable and efficient 3D meshes for a complex multi-scale model.

The goal of this paper is to present a 3D FE discretization operator
(FEDO) that automatically generates reliable and efficient tetrahedral
meshes for marine CSEM. We develop strategies for directly creating
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complete FE meshes without adaptive refinement. The development
requires understanding basic properties of tetrahedral meshes for
diffusive EM modeling, which are often not obvious when CAD or
adaptive refinement methods are employed. Ultimately, we aim to
demonstrate that FEDO can quickly derive accurate and efficient FE
meshes from a given seabed model without computational overhead
associated with adaptive mesh refinement or interactive CAD works.

The remainder of this paper is organized as follows. We first review
the FE formulation for CSEM. Its numerical dispersion characteristics
are examined to determine proper tetrahedral sizes. To avoid excessive
mesh refinement around receivers, we introduce an effective receiver
size. We follow this by presenting a matrix that maps conductivity from
FD model to FE simulation meshes. The three components above are
casted into FEDO. Finally, we apply FEDO to complex offshore models,
compute their CSEM solutions and demonstrate its accuracy and
efficiency.

2. Finite element formulation

Since the discretization density required for accurate EM solutions
is directly related with an FE formulation, we briefly describe the total
field FE formulation (Um et al., 2013) used here. The electric-field
diffusion equation is given by

μ
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where e(r) is the electric field at position r, J r( )s is an electric source at
an angular frequency ω, μo is the magnetic permeability of free space
(4π×10-7 H/m), and σ is the conductivity. The development of the
equivalent weak statement of Eq. (1) requires the multiplication of Eq.
(1) by the edge basis function and the integration over the model
domain of V, resulting in
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The superscript e denotes the eth tetrahedral element, n r( )i
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varying from 1 to 6 is a set of edge basis functions. V e is the volume of
the eth element. n r( )i

e is also chosen as the basis. Thus, the electric field
at a point inside or on a given element is expanded as
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where uj
k is the unknown amplitude of the electric field on the jth edge

of the kth element. Accordingly, the FE method is the second-order
accurate (Jin and Riley, 2008).

Substituting Eq. (3) into Eq. (2) and using the homogeneous
Dirichlet boundary conditions yield
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Eq. (4) is considered local as it results from integration over each
element. The local systems from all elements are assembled into a
single global system of equations. The global system is solved using a
parallel direct solver.

3. Numerical dispersion analysis

To determine tetrahedral mesh density required for accurate
solutions, we examine numerical dispersion characteristics for a
homogeneous whole-space seawater (3.33 S/m) model. We are inter-
ested in efficient discretization of the seawater because the seawater
can be a large portion of a CSEM model and requires the smallest
elements due to its highest conductivity. The seawater model is
20×10×10 km in the x-, y- and z-direction, respectively. The lower left
corner of the model is at (−5, −5, 5 km). A 250 m long x-oriented
electric source is placed at (0, 0, 0 km). 20 m long x-oriented electric
receivers are placed with 1 km spacing from x=1–10 km. We consider
nine source frequencies from 0.1 to 0.5 Hz with 0.05 Hz interval. Skin
depth (δ) and wavelength (λ) of the seawater are presented in Table 1.

The model (Fig. 1) is discretized using tetrahedral elements whose
vary from 10 m (near sources and receivers) to 400 m (most areas).
This is slightly smaller than δ at 0.3 Hz. Note that the FE meshes are
refined around not only the source but also the receivers. This is one of
the major differences between FD and FE. The mesh refinement near
the receivers will be discussed in the next section. The transition from
small to large edges is controlled by the growth factor defined as the
maximum rate at which the edge size can grow. The growth factor is
typically 1.5–2.0 from one edge to the next.

Amplitudes, relative amplitude errors and phases of FE solutions
are plotted against analytic solutions in Fig. 2a-c, respectively. The
relative errors are defined by ‖(numerical solution–analytic solution)/
analytic solution)‖. It is assumed that over 10 km source-receiver
offset, 5% amplitude errors are accurate enough. Based on the
criterion, the FE meshes support the lowest four frequencies: 0.10,
0.15, 0.20 and 0.25 Hz. At 0.10 Hz, the boundary effects appear at
x=8 km. To highlight the numerical dispersion characteristics of the FE
meshes, we also repeat the same experiments with a 2nd-order
accurate FD method (Newman and Alumbaugh, 1995). The FD grid
size is set to 400 m as same as that in the FE meshes. However, FD
does not produce accurate solutions at all nine frequencies (not
included here). We reduce the FD grid to 100 m and analyze
amplitudes, their relative errors and phases (Fig. 2d–f). Due to their
geometric simplicity, the FD grids are not presented here. The FD grids
support the lowest four frequencies (Fig. 2e). At 0.10 Hz, the boundary

Table 1
δ and λ in the seawater.

f (Hz) δ (m) λ (m)

0.10 873.0 5484.9
0.15 712.8 4478.4
0.20 617.3 3878.4
0.25 552.1 3469.0
0.30 504.0 3166.7
0.35 466.6 2931.8
0.40 436.5 2742.5
0.45 411.5 2585.6
0.50 390.4 2452.9

Fig. 1. The FE meshes for the seawater model. Blue and red lines represent source and
receivers, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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