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A B S T R A C T

We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal
deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault
slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an
explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015)
combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch
between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven
by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the
Defmod results against some establish results.

1. Quasi-static crustal deformation

When a region is subjected to a gradual loading process, such as
tectonic stress changes, viscoelastic relaxation, and pore pressure
changes, it deforms in a quasi-static manner. Every snapshot of a
quasi-static process, as opposed to a dynamic process, satisfies stress
equilibrium. The inertial force is considered negligible, since the net
force is small, and the time scale is large.

For linear constitutive law and small strain problems, the finite
element method, Zienkiewicz (2000), provides a system of linear
equations describing the (quasi-)static state. Eq. (1) lists the absolute
and incremental versions of the linear equation, Smith and Griffiths,
2004.

ΔK U F K U F= , absolute, = Δ , incremental.n n n n n n (1)

where, K is the system stiffness matrix, U is the solution vector and F is
the nodal force, including fluid source. The subscript n is the time
index. In this study, we use the incremental equation. The solution
space UΔ n of a poroelastic problem contains the nodal displacement

and pressure,
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The stiffness matrix Kn and RHS function FΔ n are also different for

the elastic and poroelastic problems, Eq. (2).
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where, Ke is the elastic stiffness matrix, depending on the elastic
constants of the solid. Kc is the fluid stiffness matrix, depending on the
fluid flow conductivity. H is the coupling matrix, depending on the
Biot's coefficient. Sp is the storage matrix, depending the solid
compressibility and porosity, and the fluid compressibility. Smith and
Griffiths (2004) provide the detailed formulation for these matrices and
vectors. Note, the stiffness matrix Kn is constant for evenly spaced time
step tΔ . In a later section, we show that for Newtonian viscoelasticity,
Kn is, although modified, still independent of time. fn and qn are nodal
force and fluid source respectively. The detailed formulations of these
matrices and RHS vectors are given in Appendix A

2. Poroelastic model and benchmark

Unstable pressure is caused by using linear elements, known as the
Ladyzenskaja-Babuska-Brezzi restrictions. The local pressure projec-
tion scheme, Bochev and Dohrmann (2006), is implemented to
stabilize the pore pressure,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫ n I n I G dΩ

F F 0
H p K K 0 0

0 H

H N N

= − , = + , where

, = ( − (1/ ) ) ( − (1/ ) )/(2 ) ,

n n
s n

n n
s

s
Ω

e eN N

+1 +1 +1 +1

T
(3)

http://dx.doi.org/10.1016/j.cageo.2016.11.014
Received 7 July 2016; Received in revised form 27 November 2016; Accepted 29 November 2016

E-mail address: cmeng@mit.edu.

Computers & Geosciences 100 (2017) 10–26

Available online 02 December 2016
0098-3004/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.11.014
http://dx.doi.org/10.1016/j.cageo.2016.11.014
http://dx.doi.org/10.1016/j.cageo.2016.11.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.11.014&domain=pdf


N is the shape function of an element e, ne is the node count of the
element, and G is the shear modulus.

To benchmark the poroelastic model, we compare the Defmod
results against the well known Mandel solution. Fig. 1 illustrates the
Mandel problem.

At time t=0, the boundaries at r a= ± of a homogeneously
pressurized poroelastic matrix suddenly has the pressure dropped
from p0 to zero. And, a compressional loading σ p=z 0 is placed on a
rigid plate at the matrix top. The pore fluid will then flow towards the
side boundaries accompanied by matrix deformation. Because the
matrix is axially symmetric with rigid top and bottom, the pressure,
deformation and stress only vary in r and time, not in z. These values
have closed forms in the Laplace frequency domain, Kurashige et al.
(2005). Here, we apply numerical inverse Laplace transform, Talbot's
method, to have the semi analytical pressure in the time domain.

There are two difficulties to simulate the Mandel problem with a
quasi-static model. First, the initial pressure imposed by the Mandel
problem results a singular pressure gradient at the side boundaries.
Second, implementation of the rigid loading plate requires solving a
contact problem. Thanks for the pressure stabilization method as
mentioned, the models only show some spatial oscillation near the
side boundaries at time zero. The rigid loading plate can be replaced by
uniform loading to avoid the contact problem. This requires the matrix
aspect ratio height a/ to be large enough such that the bottom, at z=0,
will not feel the tilted deformation at the top.

The poroelastic model parameters are listed in Table 1
Fig. 2 plots the initial pressure of a 2D and a 3D poroelastic models

approximating the Cartesian and cylindrical Mandel problems respec-
tively. Because of the symmetry, we only need to consider half of the
Cartesian domain and a quarter of the cylindrical domain in Fig. 1.

The numerical pressure should be normalized by p0 to be compar-
able with the Mandel pressure, Kurashige et al. (2005). A quasi-static
model always produces solutions of some stress equilibrium states.
Therefore, the model, being continuum, cannot produce the theoretical
initial pressure which has a sharp pressure drop, infinite gradient, at
x=a. To resolve this, we sync the model pressure, at r=0, z=0, t t= 1,
p t(0, 0, )model 1 with the Mandel pressure, at r =0, t t= 1, p t(0, )Mandel 1 , i.e.

multiply all the model pressures by p t
p t

(0, )
(0, 0, )

Mandel 1

model 1
, t1 being the first/

smallest nonzero model time.
Fig. 3 plots the normalized pressure as a function of r a/ by the 2D

and 3D models, at z=0, against the Cartesian and cylindrical Mandel
solutions respectively. Where the normalized time τt is given by
τ =t

tK
Sa2 , K being the solid bulk modulus and S being the storage

coefficient. Because of the difference between the model and Mandel
problem in the initial state as mentioned, the comparisons show
greater discrepancy at τ = 0t than at later times.

Note that, the initial state is not only missed by the numerical
solution but also missed by the analytical solution, using the inverse
Laplace transform, Kurashige et al. (2005). We put the time zero
pressure there just for reference. Since the analytical solution is
dimensionless, we have to normalize the numerical pressure in order
have a comparison, similar to Jha and Juanes (2014).

Fig. 4 plots the normalized pressure as a function of time at r( ) = 0
by the 2D and 3D models, at z=0, against the Cartesian and cylindrical
Mandel solutions respectively due to dimensional effect.

The 2D (Cartesian) and 3D (cylindrical) models (Mendel solutions)
show significantly different pressure curves.

To demonstrate the relation between the mesh resolution and the
results, especially the pressure peak at t=0 and near r=a, we make two
meshes for the same 3D model. One of them has 10 cells along the
radius, and another one has 20 cells along the radius. Fig. 5 compares
the two numerical pressures against the analytical result. The pressure
peak becomes lower and closer to r=a as we refine the mesh. The finer
mesh has pressure in between the coarser mesh and analytical
pressures. This suggests that the numerical solution is approaching
the analytical one with the mesh refinement. However, due to the linear
continuum nature of the code, the peak adjacent to the zero pressure
boundary, although becoming lower, would remain for a refined mesh.
Another way to improve the agreement is to refine the mesh where the
pressure gradient is large, see Appendix C.4.

3. Viscoelasticity

For Maxwell power law viscoelasticity, the deformation has affect
on the model in both the stiffness matrix Kn and the RHS function FΔ n,
Eqs. (4) and (5) by Melosh and Raefsky, 1980.
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where, B is displacement to strain matrix depending on the element
geometry, Eq. (A.10). D is the element stiffness matrix depending on
the elastic constants.
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where, e is the viscosity power law parameter. When e=1, η is the linear

Fig. 1. Schematics of the Mandel benchmark problem by Kurashige et al. (2005).

Table 1
Poroelastic model parameters: Young's modulus E, Poison's ratio ν, fluid mobility k,
Biot's coefficient αB, fluid bulk modulus kf.

E [Pa] ν k [m2/Pa/s] αB kf [Pa]

3.0E10 0.25 1.0E-12 0.96 2.2E9
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