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A B S T R A C T

The maximal ball (MB) algorithm is a well established method for the morphological analysis of porous media.
It extracts a network of pores and throats from volumetric data. This paper describes structural modifications to
the algorithm, while the basic concepts are preserved. Substantial improvements to accuracy and efficiency are
achieved as follows: First, all calculations are performed on a subvoxel accurate distance field, and no
approximations to discretize balls are made. Second, data structures are simplified to keep memory usage low
and improve algorithmic speed. Third, small and reasonable adjustments increase speed significantly. In
volumes with high porosity, memory usage is improved compared to classic MB algorithms. Furthermore,
processing is accelerated more than three times. Finally, the modified MB algorithm is verified by extracting
several network properties from reference as well as real data sets. Runtimes are measured and compared to
literature.

1. Introduction

Pore Networks are used in many fields to model porous media, for
example in the evaluation of cellular materials (Knackstedt et al., 2006;
Fischer et al., 2009; Benouali et al., 2005; Viot et al., 2008) and in the
examination of rocks and sands (Andrä et al., 2013; Wildenschild and
Sheppard, 2013; Hormann et al., 2016; Homberg et al., 2014; Al-
Kharusi and Blunt, 2007; Dong and Blunt, 2009). All of the previous
references contain a morphological analysis of the material under
investigation, which underlines its importance, for some of them it is
the central element of research.

In order to conduct future surveys in industry and academics, a
robust algorithm, which performs automated morphology inspections
on a wide range of materials, is desirable. Silin and Patzek (2006)
introduced the method of Maximal Inscribed Spheres (MIS), which can
be used to extract a network of pores and throats from a tomographic
image. They argue that thinning algorithms, which are the basis of
methods other than MIS, can lead to different results on the same data
sets, in contrast to the robust MIS-based analysis. This reasoning
together with the elegant concept of MIS have lead to the concentration
and subsequent improvements of the method in this paper.

Rabbani et al. (2014) compared MIS to other morphological
algorithms. Extensions and improvements to the original MIS-algo-
rithm can be found in several contributions (Al-Kharusi and Blunt,
2007; Dong and Blunt, 2009; Byholm et al., 2006). Al-Kharusi and
Blunt (2007) extracted complete pore networks along with pore, throat

and coordination number statistics. However, due to processing time
limitations, data sets were restricted to a relatively small size of 2003

voxels. This is also noted by Dong and Blunt (2009), who improve
previous works further.

Homberg et al. (2014) extracted pore networks using discrete
Morse theory. Their idea of hierarchical pore merging is used in this
work.

2. Methods

Basic concepts which are found in the first paper about the Maximal
Ball (MB) algorithm (Silin and Patzek, 2006) and subsequent ones (Al-
Kharusi and Blunt, 2007; Dong and Blunt, 2009; Byholm et al., 2006)
are similar to those in this paper. However, methods, data structure
and detailed concepts are changed fundamentally.

The group of existing papers will be referred to as classic MB
algorithms cMBa, while the method presented here will be abbreviated
as modified MB algorithm mMBa. They are compared step by step in
this section. Many figures in this paper are in two dimensions (2D),
however, they are also valid in 3D.

Coordinates x ∈i 3 are called voxel coordinates. Volumetric data,
e.g., reconstructed from computed tomography (CT) scanners, is stored
as voxel values f f x= ( )i i , f ∈i . The set of voxel values is called voxel
volume f{ }i , i N∈ {1,…, }, where N is the number of voxels in the
volume. All following considerations assume monodisperse material,
and that each f i is proportional to the percentage of material contained
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in the Voronoi cell induced by the regular grid x{ }i , i.e., a coverage
representation (Lindblad and Sladoje, 2015).

Noisy voxel data can produce artifacts such as false pores and
throats during network extraction and should therefore be prepro-
cessed. For example, datasets can be denoised with the well established
non-local means filter (Buades et al., 2005; Darbon et al., 2008).

In order to extract a pore network from the volume, the latter is
classified using two partitions: void space Ωvoid, which contains void
voxels xi

void, and material Ωmat. Void voxels are defined as follows:

f fx x x= { | ( ) < }i i i
void t

with the global segmentation threshold ft.
Another preprocessing step can be applied in this context: One can

require for the set x{ }i
mat to be interconnected via 26-neighborhoods

and to the volume boundary Ω∂ . All xi
mat not satisfying this condition,

i.e., being enclosed by void space, can be erased.
Both cMBa and mMBa process xi

void. For the mMBa, more geometry
information is extracted from the voxel values using grid value
interpolation, which is depicted in Fig. 1. Grid line coordinates
(Lindblad and Sladoje, 2015) xgrid are defined on the edges that connect
all grid vertices xi and xj in a 6-neighborhood. Each xgrid has a real
value in one coordinate, the remaining two coordinates remain
integers, e.g.,   x ∈ × ×grid . Grid line values f x( )grid are defined
by linear interpolation of direct neighbors f i and f j on grid lines. Now,
boundary points f fx x x= { | ( ) = }k

bound grid grid t indicate the subvoxel
accurate border between Ωmat and Ωvoid on grid edges of x{ }i , similar
to the marching cubes algorithm. The transformation of a coverage
representation to a grid line sampling (Lindblad and Sladoje, 2015)
with boundary points is used for the subsequent step of the mMBa, the
calculation of a distance field.

2.1. Distance field

In the mMBa, a distance field d{ }i with values d d x= ( )i i , d ∈i +, is
generated using the Euclidean Distance Transform (EDT) (Lindblad
and Sladoje, 2015). Let x{ }k

bound be the set of boundary points,
k K∈ {1,…, }, where K is the total number of boundary points found
by grid line sampling. Then, the EDT determines d{ }i as the shortest
distance of each xi to x{ }k

bound :
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Voxel accurate distance transforms with linear time complexity are
described by Meijster et al. (2000). The method was extended to subvoxel
accuracy with respect to grid line sampled points by Lindblad and Sladoje
(2015), which is used for the mMBa. An example for a distance field
calculated from a coverage representation can be found in Fig. 2.

2.2. Maximal balls: Definition

Both cMBa and mMBa place Maximal Balls i at every xi
void. By

definition (Silin and Patzek, 2006), each i is a sphere centered at
xi

void, with radius ri chosen maximal such that i is completely
contained in Ωvoid.

In the cMBa, ri takes discrete values and is obtained using inflating
and deflating spheres (Dong and Blunt, 2009). i are represented as
voxelized, digital spheres (Dong and Blunt, 2009).

In the mMBa, for each i, r d=i i. This is equivalent according to
the definitions of maximal balls and the distance field. The spectrum of
radii from the distance field has a higher density than in the cMBa:
Grid line sampling leads to a subvoxel resolution. In this sense, the
mMBa generally is more accurate than the cMBa. Maximal Balls
created with the mMBa are displayed in Fig. 3.

The accuracy gain in the order of one voxel is useful in two
scenarios: First, small structures, i.e., which are up to few orders larger
than 1 voxel, are characterized with greater detail. Second, binary data
sets can be converted to grey value data together with the reduction of
aliasing and terracing artifacts (Gibson, 1998). This step could be
beneficial for the accuracy for the mMBa on binary data, but was not
implemented in this paper.

2.3. Classic maximal ball algorithm

In the cMBa, after i are assigned to xi
void, they are sorted in

descending order by ri. They are sequentially processed to build up a
hierarchy (Silin and Patzek, 2006): For each i, all j with r r≤j i

and rx x∥ − ∥ ≤i j i
2 become children of i, and i becomes the

parent of each j. Silin and Patzek (2006) used the terms slave and
master instead. For each i, all parents are saved in a parent list

i
parent, and all children (irrespective of parents) are saved in a child list
i
child. A partial hierarchy graph is visualized in Fig. 3.
Next, the hierarchical graph is remapped to have two levels: If a

parent does not have parents itself, it is identified as a pore center and
all of its children's children are recursively added while replacing their
previous parent by the pore center until no more children's children are
found. Silin and Patzek (2006) describe this remapping algorithm of
depth-first search type detail.

Finally, all i are classified: If they have up to one parent, they
are part of a pore. Individual pores are distinguished by their pore
centers. If i has two or more parents, it is defined to be part of a
throat that connects the pores inside i

parent. In Fig. 3, no throats are
created and the network consists of one pore only.

Silin and Patzek (2006) introduced voxel objects i and a
reference table rt{ }i to implement the concepts of the cMBa. They
can be summarized as follows:

Fig. 1. Left: 2D image f{ }i of size 4×4 with values ranging from 0 to 3. Pixels are

depicted as tiles with different grey values, each tile represents a Voronoi cell. Right: A
threshold f = 1.5t makes it possible to define boundary points (red) between void space

(<1.5) and material (≥1.5). Pixels are depicted at grey valued dots at their actual
coordinates. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 2. Left: Two circles with center coordinates (4, 4), (4, 7) and radii 3.5, 2.5 are used

to create a coverage representation: Scanning is simulated by taking 32×32 regular
subpixel points for each pixel cell and testing if they are outside of both circles. Resulting
hits are scaled to the range [0, 255]. Right: A distance field is created with f = 127.5t .

Contour lines (red) differ by 0.5 and range from 0.5 (outer line) to 3.0 (inner line). (For
interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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