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A B S T R A C T

The large volume of high-resolution images acquired by the Mars Reconnaissance Orbiter has opened a new
frontier for developing automated approaches to detecting landforms on the surface of Mars. However, most
landform classifiers focus on crater detection, which represents only one of many geological landforms of
scientific interest. In this work, we use Convolutional Neural Networks (ConvNets) to detect both volcanic
rootless cones and transverse aeolian ridges. Our system, named MarsNet, consists of five networks, each of
which is trained to detect landforms of different sizes. We compare our detection algorithm with a widely used
method for image recognition, Support Vector Machines (SVMs) using Histogram of Oriented Gradients (HOG)
features. We show that ConvNets can detect a wide range of landforms and has better accuracy and recall in
testing data than traditional classifiers based on SVMs.

1. Introduction

During the past ten years, the Mars Reconnaissance Orbiter (MRO)
has collected over 30 Terabytes of data. Two of the cameras onboard
MRO that are routinely used to study geological landforms include the
High Resolution Imaging Science Experiment (HiRISE; 0.3 m/pixel
resolution; McEwen et al., 2007) and the Context Camera (CTX; 6 m/
pixel resolution; Malin et al., 2007). However, the total data volume of
these images poses new challenges for the planetary remote-sensing
community. For instance, each image includes limited metadata about
its content, and it is time consuming to manually analyze each image to
search for non-indexed information. Therefore, there is a need for
computational techniques to search the HiRISE and CTX image
databases and discover new content.

Many algorithms can classify image content, such as Support Vector
Machines (SVMs) and logistic regression. Yet, most of these algorithms
require pre-processing steps, like smoothing filters or Histogram of
Oriented Gradients (HOG) methods (Dalal et al., 2005), which are
typically tailored to address a specific classification problem. These pre-
processing steps extract characteristics of the data, like edges in a
picture, or patterns of illumination in a remote sensing scene. The
signal processing and computer science communities refer to these
characteristics as features. Convolutional Neural Networks (ConvNets)
have become an increasingly popular alternative for image classifica-
tion (LeCun, 2016), and compared with other classifiers, ConvNets
have the best performance for recognition of both characters (Ciresan

et al., 2012) and images (Graham, 2015). ConvNet architectures are the
best performing algorithms in both the Mixed National Institute of
Standards and Technology (MNIST) and Canadian Institute for
Advanced Research (CIFAR) data sets, which are the standard classi-
fication data sets within the computer vision community. ConvNets
learn their own input features, which alleviates the need to test
different pre-processing algorithms. Furthermore, Graphical
Processing Units (GPUs) can significantly increase the speed of training
and classification steps in ConvNets. Using GPUs is not unique of
ConvNets, and other Deep Learning architectures can also benefit from
GPU acceleration.

In this paper, we address the problem of automated landform
detection using ConvNets to identify Volcanic Rootless Cones (VRCs)
and Transverse Aeolian Ridges (TARs) in two types of Mars satellite
imagery by:

1. Training a ConvNet to detect landforms of varying size and shape,
using VRCs as an example;

2. Showing that, for VRCs, a ConvNet performs better than optimized
SVMs with HOG features; and

3. Showing that ConvNets also have the ability to detect a variety of
other landforms, such as TARs.

Although our classifier is designed to detect many geologic features,
the scope of the current study focuses on identifying VRCs and TARs as
two examples of morphological distinct landforms, which are intended
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to highlight the broad applicability of our classifier to a wide range of
geological classification problems.

2. Background information

2.1. Automated landform detection

Previous applications of machine learning in planetary sciences
have typically focused on the automated detection of impact craters
(Urbach and Stepinski, 2009; Bandeira et al., 2012; Stepinski et al.,
2012; Emami et al., 2015; Cohen et al., 2016). Such Crater Detection
Algorithms (CDAs) diminish the need for an operator to delimit
manually all craters within a region, which is useful for generating
impact crater inventories over large areas; however, manual inspection
is still required to validate the results. The most popular CDAs first
extract features from the data (e.g., shapes and patterns of light and
shadow) and then apply a classifier (Stepinski et al., 2012). For
instance, Urbach and Stepinski (2009) proposed a popular and efficient
CDA, which applies a series of filters to remove the background noise
and then creates a set of features that look for the characteristic
crescent-shaped shadow of a crater. Bandeira et al. (2012) used the
same approach, but added texture recognition to improve the precision
of the algorithm. Cohen et al. (2016) showed preliminary results using
a ConvNet for crater detection and demonstrated that they outper-
formed previously tested methods in the same dataset.

Aside from detecting impact craters, machine learning methods
have only been used to identify a few other landforms in a planetary
science context. These efforts include using Self Organizing Feature
Maps (SOFMs) to identify VRCs in Mars Global Surveyor (MGS) Mars
Orbiter Camera (MOC) imagery (Hamilton and Plug, 2004), applica-
tions of SVMs to detect dunes in MOC images (Bandeira et al., 2011),
and object-based approaches to estimating the orientation of TARs
with HiRISE data (Vaz and Silvestro, 2014). More recently, Palafox
et al. (2015) and Scheidt et al. (2015) have also demonstrated the
utility of ConvNets for detecting VRCs and TARs in HiRISE images.
However, in general, little work has been done to develop generalized
classifiers to detect other geological landforms using planetary remote
sensing data—with the exception of the hazard navigation and auto-
mated rock analysis by robotic rovers on Mars. For instance, Gor and
Castano (2001) designed an automated classifier to detect and analyze
rocks for both of NASAs Mars Exploration Rovers (MERs) Spirit and
Opportunity (Gor et al., 2001). Biesiadecki and Maimone (2006) also
designed a self-navigation system using stereo matching and Random
Sample Consensus (RANSAC) algorithms, and used these algorithms to
estimate the position of the rover by identifying landmarks in the image
data (Biesiadecki and Maimone, 2006).

2.2. The characteristics and geological significance of VRCs and TARs

Volcanic Rootless Cones (VRCs) are generated by explosive inter-
actions between lava and external sources of water (Thorarinsson,
1951, 1953), and are commonly associated with the flow of lava into
marshes, lacustrian basins, littoral environments, glacial outwash
plains, snow, and ice. Terrestrial VRCs cover areas of up to
∼150 km2 and generally include numerous cratered cones ranging
from 1 to 35 m in height and ∼2–500 m in diameter (Fagents and
Thordarson, 2007). VRCs on Mars (Fig. 1) are generally larger,
typically ranging from tens of meters to ∼1 km in diameter, and can
form groups covering thousands of square kilometers (Hamilton et al.,
2010a, 2010b, 2011). Rootless cone morphologies and spatial organi-
zation strongly depend upon lava emplacement processes (Hamilton
et al., 2010a, 2010c) and a balance between the availability and
utilization of lava (fuel) and groundwater (coolant) in molten fuel–
coolant interactions (MFCIs; Sheridan and Wohletz, 1981, 1983;
Wohletz, 1983, 1986, 2002; Zimanowski et al., 1991; Zimanowski,
1998). However, in the presence of excess lava (e.g., in regions

inundated by large sheet-like flows of molten lava), it may be assumed
that the location of VRC groups will strongly depend on the distribution
of near-surface H2O and that VRCs may be used a proxy for former
H2O deposits (Frey et al., 1979; Frey and Jarosewich, 1982; Greeley
and Fagents, 2001; Fagents and Thordarson, 2007; Head and Wilson,
2002; Fagents et al., 2002; Jaeger et al., 2007; Hamilton et al., 2010a,
2010c, 2011). Cratered cones, resembling terrestrial VRCs, have been
identified in many regions on Mars (Fagents and Thordarson, 2007)
and their widespread occurrence makes them important as a paleo-
environmental indicator that can be used to infer the locations of near-
surface H2O at the time of lava flow emplacement.

Wind plays a significant role in shaping the surface of Earth and
Mars by moving small particles to generate a variety of depositional
and erosional features. Aeolian bedforms include ripples and dunes, as
well as a distinct class of bedforms termed Transverse Aeolian Ridges
(TARs) (Bourke et al., 2003). TARs occur in the equatorial and mid-
latitude regions of Mars (Balme et al., 2008; Berman et al., 2011), but it
is uncertain whether or not they form by ripple- or dune-forming
processes. It is clear that many martian TARs are constructional
landforms, resulting from the transport and deposition of granular
material, alternative hypotheses have been proposed for some exam-
ples. For instance, Montgomery et al. (2012) explain several TAR-like
features on Mars as periodic bedrock ridges, which are erosional
landforms with crests that are transverse to the prevailing wind
direction (Greeley et al., 1992; Hugenholtz et al., 2015). These
contrasting interpretations carry different implications for surface–
atmospheric interactions on Mars and the deposition, or erosion, of
sedimentary units through time. Mapping the spatial distribution of
TARs over regional and global scales could provide important new
constraints for their formation processes, but their small size and
widespread distribution makes automated approaches to TAR identi-
fication preferable to manual mapping efforts.

3. Methods

3.1. Support Vector Machines (SVMs)

In planetary remote sensing, SVMs have been used to detect impact
craters on the Moon (Burl, 2000) and to study volcanic landforms on
Venus (Burl, 2001; Decoste and Schölkopf, 2002). SVM algorithms use
a function, known as a kernel, to create a decision boundary that
separates data into distinguishable classes (Boser et al., 1992; Hastie
et al., 2009). In remote sensing, these kernels become especially
important as objects from different classes may have overlapping
characteristics.

Our SVM classifier uses Histogram of Oriented Gradients (HOG)
features to accentuate landforms in HiRISE and CTX images. In the
HOG transformation, a series of oriented gradients—discrete angles
between 0 and 360°—are drawn in small, adjacent non-overlapping
units. A histogram representing the number of elements in line with
these oriented gradients is created for each unit and depicted as an
intensity vector in that unit. An array of HOG features representing the
linear landforms of an image can provide additional information
beyond the original data set. HOG is very robust to changes in
illumination and shadowing, which is a desirable characteristic in a
landform detection algorithm (Dalal et al., 2005).

3.2. Convolutional Neural Networks (ConvNets)

Artificial Neural Networks (ANNs) are composed of connected set
of linear classifiers, each of which is trained to generate a specific
decision boundary and classify simple spaces. Layers within an ANN
are connected in sequential order, such that the input of a layer is the
output of the previous one. Traditionally, ANNs have an input layer,
which receives the input data; a set of hidden layers, which serve as the
classifier; and an output layer that provides the result of the classifica-
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