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A B S T R A C T

Bayesian inverse modeling techniques are computationally expensive because many forward simulations are
needed when sampling the posterior distribution of the parameters. In this paper, we combine the implicit
sampling method and generalized polynomial chaos expansion (gPCE) to significantly reduce the computational
cost of performing Bayesian inverse modeling. There are three steps in this approach: (1) find the maximizer of
the likelihood function using deterministic approaches; (2) construct a gPCE-based surrogate model using the
results from a limited number of forward simulations; and (3) efficiently sample the posterior distribution of the
parameters using implicit sampling method. The cost of constructing the gPCE-based surrogate model is further
decreased by using sparse Bayesian learning to reduce the number of gPCE coefficients that have to be
determined. We demonstrate the approach for a synthetic ponded infiltration experiment simulated with
TOUGH2. The surrogate model is highly accurate with mean relative error that is <0.035% in predicting
saturation and <0.25% in predicting the likelihood function. The posterior distribution of the parameters
obtained using our proposed technique is nearly indistinguishable from the results obtained from either an
implicit sampling method or a Markov chain Monte Carlo method utilizing the full model.

1. Introduction

Hydrological models are crucial to the understanding and descrip-
tion of water cycles. Hydrological model parameters, such as site-
specific material properties and process-related parameters, as well as
boundary conditions and site geometry play a major role in the model's
ability to predict the hydrological states. These parameters can be large
scale, highly uncertain and difficult to measure (Abubakar et al., 2009;
Liu and Gupta, 2007). Thus, inverse modeling is typically performed to
infer the model parameter values based on the sparse observations of
some observables, by matching the numerical model (the forward
model) to measured data at discrete spatial and temporal points.

Inverse modeling techniques, in general, fall into two categories:
deterministic and probabilistic inversions. The deterministic approach
aims to find a single set of parameter values that represent the “best fit”
given the observations and a criterion that measures the closeness
between the model response and the observations. Therefore, the
essence of a deterministic inversion is the minimization of the objective
function, which measures the difference between the model and the
observed data. Commonly used objective functions are derived based
on the assumptions that the model is correct and the errors in the
measured data are normally or exponentially distributed, resulting in

the maximum likelihood and L1 estimators, respectively (Tarantola,
2004). A broader selection of objective functions can be found in
Finsterle and Najita (1998) and Schoups and Vrugt (2010). For
detailed theory and computational methods for deterministic inver-
sions, the readers are referred to Vogel (2002), Neto and da Silva Neto
(2012), and Ramm (2005). Deterministic inversion usually requires
some form of regularization since inverse problems are often ill-posed
(Kabanikhin, 2008). The well-known Tikhonov regularization, for
instance, is typically used in least-square problems. In addition,
estimation of the inversion uncertainty within a deterministic frame-
work requires strong assumptions about the error structure of the
observation and parameters, and about the linearity of the forward
problem (Carrera and Neuman, 1986).

Accurate characterization of the inversion uncertainty is desirable in
many applications as it provides an informed representation of the distribu-
tion of parametric uncertainty that can be propagated through the forward
model, as is often done in uncertainty quantification (UQ) (Mondal et al.,
2010; Liu et al., 2015a). With probabilistic inversion methods, the inversion
result is presented in the form of joint probability distributions instead of a
single set of parameter values. A common way to achieve this is through the
Bayesian probability theory, which relates the parameter posterior distribu-
tion conditioned on the observations to the product of the prior distribution
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and likelihood function. Since the resulting posterior densities can be
complex, they are typically discretely represented by a set of samples
obtained through sampling methods. With the Markov chain Monte Carlo
(MCMC) method (e.g., Andrieu et al., 2003), these samples are generated by
an acceptance-rejection approach. However, evaluating the acceptance-
rejection criteria in MCMC, which involves a forward simulation for each
proposed sample, can be extremely inefficient if the fraction of the rejected
samples is large. The “burn-in” period for a MCMC sampling can also be
long, resulting in a large number of samples being wasted. In addition, the
significant (high-probability) region of the posterior distribution may be
small, which further decreases the efficiency of MCMC sampling. Recent
advances in MCMCmethods address some of these difficulties. For example,
Vrugt et al. (2009) proposed a differential evolution adaptive Metropolis
scheme (DREAM) that explores the optimized proposal distribution in
parallel and extends its applicability to estimating multi-modal posterior
densities; Goodman and Weare (2010) suggest a family of multi-particle
MCMC samplers with an affine invariance property that can offer signifi-
cantly improved performance over standard single-particle methods; and
Martin et al. (2012) present a stochastic Newton MCMC method by
constructing a proposal density based on local Gaussian approximation that
is especially efficient for large-scale inversions.

As a powerful alternative, particle filters (PF) (Liu and Chen, 1998;
Arulampalam et al., 2002) are sequential Monte Carlo methods used in
data assimilation to update the discrete representation of posteriors of
the state variables in the form of particles (samples) with associated
weights as new observable data become available. PF are “embarrass-
ingly parallel” and the computational complexity is independent of the
dimensionality of the system. However, PF can suffer from “particle
collapse” (sample impoverishment), where only a small fraction of the
particles have non-negligible weights. A large number of particles are
thus needed for a meaningful approximation of the posterior.

Recently, a variant of PF, named implicit particle filter (IPF) was
developed by Chorin and Tu (2009) and Chorin et al. (2010, 2013) as a
remedy for sample impoverishment. IPF searches samples in the high
probability region of the posterior by connecting the target particles with
a reference distribution through a mapping of one's choice. The quality
of the particles can therefore be significantly enhanced, as the proportion
of the particles with non-negligible weights increases, and the overall
number of particles needed is reduced. A number of improvements and
applications of IPF have been made since its inception. Morzfeld et al.
(2012) proposed a random map procedure and applied it to assimilating
data for a stochastic Lorenz attractor; Morzfeld and Chorin (2012)
applied IPF to geomagnetic data assimilation with partial noise; Atkins
et al. (2013) established the connection of IPF with variational data
assimilation. More recently, Morzfeld et al. (2015) implemented IPF for
estimating parameters for subsurface flow modeled by Darcy's law; they
observed a faster convergence compared to Metropolis MCMC. We
henceforth use the term “implicit sampling” adopted therein in the case
of inverse modeling independent of time, while “implicit particle filter” is
used for the data assimilation processes where the systems are dynamic
and the parameters are time-dependent.

Implicit sampling (IS) involves the mapping from samples drawn
from a different distribution, called the reference distribution, to the
target particles, which may require solving a nonlinear equation for
each given sample, depending on the type of the mapping chosen, and
thus requires a large number of forward simulations. In view of this, we
propose using a reduced order model (ROM) that serves as a surrogate
for the forward model (see Razavi et al. (2012), Pau et al. (2014), Liu
et al. (2016a, 2016b)), among others). The ROM is constructed with an
initial set of forward simulations (training set), and subsequently
substitutes the forward model. We develop our ROM based on the
widely used generalized polynomial chaos expansion (gPCE) (Xiu and
Karniadakis, 2002). The construction of gPCE requires determining the
coefficients of the expansion terms once the type of the polynomial
basis and expansion order are selected. However, the optimal poly-
nomial expansion order is not a priori known. A low-order expansion

may not accurately represent the response surface. On the other hand,
a high-order expansion leads to exponentially large number of expan-
sion terms. As a consequence, the number of forward simulations
needed to estimate the gPCE coefficients also increases exponentially.
The error associated with the overall gPCE can also increase since the
estimation errors associated with the estimated gPCE coefficients may
increase substantially as the expansion order increases.

However, the gPCE coefficients can be sparse, i.e., only a small
number of the coefficients are non-zero. The sparsity is due to the
following reasons: higher-order parameter interactions may not exist
(Rabitz et al., 1999); the model response is smooth and so are the higher-
order derivatives, leading to a fast decrease in the magnitudes of the
coefficients as the polynomial orders increase; and the model response is,
by nature, the superposition of only a sparse subset of all the polynomial
bases up to a given order. Since the set of non-negligible gPCE coefficients
is not a priori known, we can pose the problem as a sparse Bayesian
learning (SBL) problem (Sargsyan et al., 2014) (also known as relevance
vector machine and Bayesian compressive sensing (Tipping, 2001;
Tipping and Faul, 2003)), where the model outputs are characterized by
a hierarchical form of Gaussian likelihood and prior. Babacan et al. (2010)
further demonstrated that using Laplace prior to model the sparsity
improved the performance. With SBL, the sparsity is obtained by updating
one gPCE coefficient at a time using a greedy algorithm that iteratively
selects the most contributing coefficients until a prescribed stopping
criterion is reached. The initial set of coefficients is set to be empty, and an
efficient algorithm to update the coefficient set, either by including a new
one, revising the value of an existing coefficient, or deleting an existing
one, is described in Tipping and Faul (2003). Sargsyan et al. (2014)
empirically demonstrated that good estimates of the gPCE coefficients can
be obtained if the number of training samples is about five times that of
non-zero coefficients. Depending on the ratio of the number of non-zero
coefficients to the number of coefficients required by a particular
expansion order, the number of forward model simulations to construct
the ROM can be greatly reduced.

In the present work, we implement implicit sampling in inverse
modeling for a synthetic ponded infiltration experiment. The goal of
the inversion is to determine the permeability distribution of the
vadose zone based on saturation measurements. We also demonstrate
that the performance of the inversion can be further enhanced by
constructing and utilizing a reduced order model based on generalized
polynomial chaos expansion and sparse Bayesian learning. The pro-
posed inversion method is compared to a state-of-the-art Markov chain
Monte Carlo simulator described in Goodman and Weare (2010).

The rest of this paper is structured as follows. In the next section,
we introduce the vadose zone hydrological forward model, followed by
a mathematical description of the implicit sampling method and details
about the construction of the reduced order model using generalized
polynomial chaos expansion and sparse Bayesian learning. In Section
4, the main results and discussion of the inversion of the hydrological
model are presented. In the end, we conclude the paper with possible
improvements for future work.

2. A hydrological inverse modeling problem

The hydrological problem used to demonstrate our approach is a
synthetic field experiment shown in Fig. 1. An infiltration pond releases
water into a heterogeneous but structured vadose zone whose water
table is at the depth of 3 m. The saturation distribution is initially in
gravity-capillary equilibrium, and the infiltration rate is controlled in
order for the water level in the pond to stay at 2 cm for 1 day. After
that, the experiment proceeds without infiltration for another day.
Water saturation is measured at 36 monitoring points (circles in Fig. 1)
initially and every 2 h from 34th hour till the end of day 2; the amount
of water flowing out of the pond is also measured at the same times.
The subsurface flow is modeled by Richards' equation (Richards, 1931)
as implemented in the integral finite difference simulator TOUGH2
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