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A B S T R A C T

In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI
color spaces and texture features in plane and cross polarized light. The proposed system has two phases for
mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each
pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are
produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified
based on a cascade classification approach. The first level of the cascade includes a set of artificial neural
networks (ANNs) corresponding to the number of input minerals which are trained based on color components.
In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The
second level of the cascade includes one ANN which is trained based on texture features in plane and cross
polarized light images. In the second level, those minerals which are indistinguishable based on color
components in both plane and cross polarized light are identified (are rejected in the first level of the cascade).
The final output of the system is the name and number of minerals, boundary and percentage of each mineral in
thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test
igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important
applications which require a real time segmentation and identification map such as petrography, and NASA
Mars Explorations.

1. Introduction

An inherent part of modern geology is rock classification
(Młynarczuk et al., 2013), and it is based on mineral identification.
Rock classification plays an important role in mining engineering, rock
mechanics, petrology, petrography, and many other branches of
geosciences. Manual mineral identification, which is handled by a
human expert in a mineralogy laboratory, can be conducted by such
methods as polarized light microscopy, X-Ray Diffraction (XRD), X-
Ray Fluorescence (XRF), Atomic Absorption Spectroscopy (AAS),
Electron Micro Probe Analyzer (EMPA), Scanning Electron
Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX) and
Transmission Electron Microscopy (TEM). The polarized light micro-
scopy works based on thin sections and is a low cost, common and
popular method for mineral identification, and also for conventional

rock classification. However, manual mineral identification is a time
consuming work, and also it is burdened with errors. Therefore,
developing an intelligent method which is handled by a computer
under a human expert supervision for mineral identification in thin
sections is a great contribution in modern computational geology.

Thus far, several studies have been conducted to develop a method
for minerals identification in thin sections (Marschallinger and
Hofmann, 2010; Hofmann et al., 2013). In a study conducted by
Fueten (1997), an automated system using rotated polarizer positions
for automated analysis from rock thin sections is proposed. A
classification algorithm was developed for identifying macroscopic
scale minerals in desktop scanned rock samples in which 90.00%
overall accuracy was obtained by using a maximum likelihood classifier
(Marschallinger, 1997). In another study, thin section images in RGB
and HSI color spaces were used, and 10 minerals were identified using
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an artificial neural network (ANN) with the overall accuracy of 93.53%
(Thompson et al., 2001). In the experiment carried out by Ross et al.
(2001), color and texture features were used as an input data to a
genetic programming (GP) algorithm. In their study, 11 separate GPs
were developed for all 11 minerals and the minerals were recognized
with the overall accuracy in the range of 86.00–98.00%. Also, another
GP was trained for identifying all 11 minerals; however, it failed to
recognize them accurately. In another study, an algorithm for classify-
ing the texture of ancient carbonates found in thin sections was
suggested (Marmo et al., 2005). They used digital gray level images
obtained from thin sections as an input data, and also used an ANN as
the classification tool. As a result, they obtained an overall accuracy of
93.50% for correct recognition. A method based on albedo, color,
texture, and shape properties for rock classification in natural scenes
was presented by Dunlop (2006). Using a SVM (support vector
machine) method, an overall accuracy of 86.30% was obtained for
correct recognition. Image processing and mathematical morphology
methods were used by MŁynarczuk (2010) for classifying rocks on the
basis of their surface. In addition, a 6D feature space was used for
clustering minerals, and as a result, five rocks were recognized with the
overall accuracy of 95.00%. An approach to identify the texture of thin
sections collected from different basalt rock samples was proposed in
an experiment conducted by Singh et al. (2010). In their study, using
an ANN the overall accuracy of 92.22% was obtained for identifying the
texture of basalt rocks. An algorithm based on RGB and HSV color
spaces was proposed by Baykan and Yılmaz (2010). As a result, five
minerals were identified by using an ANN with the overall accuracy in
the range of 81.00–98.00%. Another method was proposed by
Młynarczuk et al. (2013) in which four color spaces including RGB,
CIELab, YIQ, and HSV were used. They also used four pattern
recognition methods including nearest neighbor, K-nearest neighbor,
nearest mode, and optimal spherical neighborhoods. As a result, the
best accuracy for identifying nine rock types was obtained by using
CIElab color space and nearest neighbor classifier as high as 99.80%.
Generally, there are two main limitations through the literature of the
intelligent mineral identification. The first one is that using only color
components or using both color and texture features at the same time
for identifying all minerals. The second one is that mineral segmenta-
tion phase was not considered before mineral identification, and all
pixels were fed to algorithms for identification at the same time.
Accordingly, this approach reduced the efficiency of the intelligent
mineral identification.

In order to cover these limitations, we have developed a reliable and
robust intelligent system for mineral identification in thin sections. The
developed system has two phases. Intelligent mineral segmentation is
the phase#1 which was introduced in the first paper of our series of two
papers (Izadi et al., 2015). In the phase#1, several mineral clusters
including index minerals were produced as the segmented minerals.
The phase#2, which is the focus of this study, is the intelligent mineral
identification based on color components and texture features, and

cascade classification approach. The cascade approach used in this
study includes two levels. In the first level of the cascade, those mineral
clusters that can be distinguished only by color components (labeled as
group#1 in our database) are identified using a set of ANNs trained by
color components (23 ANNs corresponding to the number of input
minerals). In the second level of the cascade, those mineral clusters
which cannot be distinguished only by color parameters (labeled as
group#2 in our database) and are rejected from the first level of the
cascade are identified using a set of ANN (one ANN) trained by textural
features. For instance, we identify between minerals in the second level
of the cascade. The proposed approach produces faster and more
reliable results. The first contribution of the proposed system is using
cascade classification approach, as the first time, and two sets of ANNs
based on the color and textural features of minerals inside thin
sections. The second contribution is extracting textural features in
eight different directions including 0°, 45°, 90°, 135°, 180°, 225°, 270°
and 315° based on three gray scales of 64, 128 and 256. The third
contribution is developing a reliable intelligent system for minerals
segmentation and identification in thin sections. The final output of the
system is the name and number of minerals, boundaries and percen-
tage of each mineral in thin section, and eventually the name of the
probable target rock. We will show that both color and texture features
are required for identifying some minerals (the group#2), not all
minerals.

The rest of this paper is organized as follows. The database of
images is described in Section 2. The details of the proposed system are
presented in Section 3. Experimental results and discussion, and
comparison are provided in Sections 5 and 6, respectively. Finally, in
Section 6, the conclusion remarks are stated, and suggestions for
further researches are provided.

2. Database collection

To establish a database for this study, the images were captured in
both plane and cross polarized light in the maximum intensity of
polarizing colors of the minerals (Ross et al., 2001), by using a digital
camera installed on a polarized light microscopy. In our study, 135 thin
sections consisting of a Glass and 22 common igneous minerals were
collected (Table 1). All images were captured in RGB color space and
TIFF file format, with the 5X magnification of the microscope objective,
with size of 300 horizontal by 250 vertical pixels, and resolution of 96
dpi. The database was divided into two groups manually. The group#1
included those minerals which exhibit different colors in plane or cross
polarized light. Therefore, color components are a perfect parameter
for the identification of those minerals. The group#2 included those
which exhibit almost the same color in plane and cross polarized light,
and so, textural features are also required for correct identification.

Table 1
The list of minerals and Glass used in this study. Number of pixels indicates the total number of pixels of that mineral or Glass in all 135 thin sections.

Row# Mineral Group Number of pixels Row# Mineral Group Number of pixels

1 Biotite 1 6975 13 Topaz 1 2500
2 Apatite 2 500 14 Kyanite 1 2500
3 Andalusite 2 500 15 Sanidine 2 1000
4 Muscovite 1 9980 16 Epidote 2 1500
5 Orthoclase 2 8500 17 Garnet 1 1000
6 Aegirine 1 3500 18 Nepheline 1 500
7 Quartz 2 15,795 19 Nosean 1 1000
8 Actinolite 1 2500 20 Hornblende 1 2000
9 Amphibole 1 500 21 Analcime 1 500
10 Olivine 2 3000 22 Augite 1 1000
11 Glass 1 5500 23 Hypersthene 1 1000
12 Talc 2 2500
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