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A B S T R A C T

Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience
applications for the identification and visualization of dynamical processes. The key idea is to learn the structure
of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed
physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying
dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data
have shown great potential for scientific discovery. However, in these initial studies no ground truth was
available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed
physically plausible. The lack of ground truth is a typical problem when using causal discovery in the
geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we
encountered one type of connection for which no explanation was found. To address both of these issues we
developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and
diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better
understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to
better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the
previously unexplained connections.

1. Introduction

Recent research has shown great potential for causal discovery
algorithms to track information flow from observed data for geoscience
applications. The key idea for tracking information flow in geoscience is
to interpret large-scale dynamical processes as information flow and to
identify the pathways of this information flow by learning graphical
models from observational data. Since probabilistic graphical models
are based on information-theoretical measures, they provide an ideal
tool to track such information flow. We have obtained very promising
results by applying constraint-based structure learning of probabilistic
graphical models to real-world atmospheric data. For example, we
compared information flow in two case studies, (1) boreal winter vs.
summer (Ebert-Uphoff and Deng, 2012) and (2) current climate vs.
projected climate in 100 years under global warming (Deng and Ebert-
Uphoff, 2014), that provided new insights into the change of large-scale
dynamics for these cases. (Obviously, the latter comparison is based on

data generated by climate models, in addition to observed data).
One challenge of using causal discovery in climate science (and

many other geoscience applications) is that there is never any exact
ground truth available in climate data,1 i.e. the only way to evaluate the
results we obtained was to have the domain expert (second author of
this paper) visually inspect the resulting graphs of information flow and
consider whether they seemed physically plausible given the current
knowledge in climate science about interactions in the atmosphere.
While this evaluation confirmed the potential of this new methodology,
it leaves much to be desired. In particular, we did not have the tools to
evaluate the accuracy of the method or to know how exactly to
interpret the resulting networks. The lack of ground truth is a typical
problem when using causal discovery in the geosciences, simply
because the earth is too complex a system and not all connections
are known—which is precisely the reason why we want to apply causal
discovery in the first place, but it is also a major challenge when
evaluating and interpreting the results, as illustrated in the following
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1 Even when using the output from climate models, we do not have information on the large-scale dynamics, since the climate models utilize numerical equations localized in both
space and time, i.e. expressing the state of the system for each location at the next time step based on that at the previous time step. These equations themselves thus do not provide
explicit information on the large-scale interactions occurring in the climate system.
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section.

1.1. Unexplained concurrent edges in connectivity graphs

Causal discovery methods applied to observed data can never be
used to prove causal connections between observed variables—mainly
due to the potential existence of hidden common causes (aka latent
variables)—, but only to disprove causal connections. Building on this
fact, the causal discovery algorithm applied here is an elimination
procedure that first assumes that any two variables can be in a cause–
effect relationship, then disproves many of those relationships using
conditional independence tests applied to the observed data. An
important implication is that the results obtained by this approach
only indicate potential cause–effect relationships. Thus, when applied
to geoscience applications, we must always perform an evaluation step
at the end of the analysis. Namely, a geoscience expert must check
every link (or group of links) in the final graph. If there is a known
physical mechanism that explains the link, the link is accepted as a
causal interaction. Otherwise, it provides a new causal hypothesis to be
studied further.

When applying this evaluation step in our analysis of connections in
the atmosphere, we found that many edges were easily explained by
physical means, but we often encountered one type of edge that eluded
any physical interpretation, namely a spiderweb-like pattern of appar-
ently instantaneous (or high-speed) connections between neighboring
points (see Ebert-Uphoff and Deng, 2012 for the first documented
occurrence). Fig. 1 provides an example of this type of unexplained
edges. Fig. 1 shows interactions found in the atmosphere, based on
observed daily geopotential height data, using causal discovery. The
interactions shown in Figs. 1(b) and (c) are easily explained, as they
represent interactions in the atmosphere due to storm tracks. However,
the spiderweb-like pattern of connections in Fig. 1(a) indicates that
most neighboring grid points have an instantaneous (i.e. extremely
fast) interaction between them, which does not match physical
observation, as no such strong and consistent motion exists, especially
near the equator. Repeated simulations with similar data have shown
similar patterns of unexplained connections, while all non-instanta-
neous connections (such as the ones in Fig. 1(b,c)) found are physically
meaningful. Over the years we have increased the computational
efficiency of our algorithm, thus being able to increase grid resolution,
and found that with increasing resolution the number of these
unexplained connections increases further. The reason for their
existence—and any potential physical interpretation—remained a mys-
tery for the past three years that we wanted to resolve.

1.2. Using synthetic data

Lack of ground truth presented a similar challenge, until recently,
for a different type of network learned from climate data, namely
complex networks. Complex networks, also known as climate net-
works, were first proposed by Tsonis and Roebber (2004) and are a
much simpler concept, exclusively based on Pearson correlation.
Namely, any two nodes are connected if and only if the Pearson-
correlation of the corresponding data is above a chosen threshold.
(Note that the purpose of complex networks in geoscience applications
is to identify similarities between different locations, while the purpose
of the causal discovery networks discussed here is to identify interac-
tion pathways between different locations—a distinctly different
purpose.) Complex networks have been applied to climate data for
over a decade (Tsonis and Roebber, 2004; Tsonis et al., 2006, 2008;
Yamasaki et al., 2008; Donges et al., 2009; Steinhaeuser et al., 2010),
and many insights have been drawn from them over the years, but they
had never actually been tested on simulation data until very recently.
Molkenthin et al. (2014) finally filled this gap by testing complex
networks on simulated data developed for that purpose and then
comparing the results to the known physics of the simulation data.

Here we seek to achieve the same goal for connectivity graphs
generated by causal discovery algorithms. For this purpose we devel-
oped a simulation framework, similar to the one by Molkenthin et al.
(2014), that models the two most important dynamical processes in the
atmosphere, diffusion and advection. These processes are also domi-
nant in many other geoscience applications, thus allowing us to
generate synthetic data sets for a great variety of different conditions
and for which the exact dynamics are known. This allows us (1) to
develop a better understanding of how these physical processes appear
in the connectivity graphs generated by the causal discovery algorithm,
and thus to better interpret connectivity graphs obtained from real-
world data; (2) to resolve the mystery of the previously unexplained
spiderweb connections identified from atmospheric data.

We make all of the synthetic data sets discussed here (along with
results from our causal discovery approach) available to the community
as benchmarks to apply other types of causal discovery algorithms.2

1.3. Organization of this article

The remainder of this article is organized as follows. Section 2
briefly describes the causal discovery algorithm used, sample applica-
tions, and the testbed used to generate synthetic data. Section 3

Fig. 1. Connectivity plots of interactions in atmosphere in Northern hemisphere based on observed geopotential height data (using PC stable, D=1 d, α = 0.1 and 800-point Fekete grid).
(a)–(c) show connections found for 0, 1 and 2 days, respectively, from potential cause to potential effect.

2 See URL http://www.engr.colostate.edu/~iebert/DATA_SETS_CAUSAL_
DISCOVERY/
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