
Applied Soft Computing 12 (2012) 2707–2718

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

Neural identification of dynamic systems on FPGA with improved PSO learning

Mehmet Ali Cavuslua, Cihan Karakuzub, Fuat Karakayac,∗

a Koc Information and Defense Technologies Inc., METU Technopolis, ODTÜ-Teknokent, 06800 Ankara, Turkey
b Bilecik Seyh Edebali University, Engineering faculty, Department of Computer Engineering, Gülümbe Campus, 11210, Bilecik, Turkey
c Nigde University, Engineering Faculty, Department of Electrical and Electronics Engineering, Nigde, Turkey

a r t i c l e i n f o

Article history:
Received 9 June 2011
Received in revised form 31 January 2012
Accepted 4 March 2012
Available online 17 March 2012

Keywords:
Artificial neural networks (ANN)
Particle swarm optimization (PSO)
FPGA
System identification

a b s t r a c t

This work introduces hardware implementation of artificial neural networks (ANNs) with learning abil-
ity on field programmable gate array (FPGA) for dynamic system identification. The learning phase is
accomplished by using the improved particle swarm optimization (PSO). The improved PSO is obtained
by modifying the velocity update function. Adding an extra term to the velocity update function reduced
the possibility of stucking in a local minimum. The results indicates that ANN, trained using improved PSO
algorithm, converges faster and produces more accurate results with a little extra hardware utilization
cost.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks (ANNs) have been widely and suc-
cessfully used in many fields to solve complex problems. ANNs are
capable of successfully modeling non-linear complex correlation
between input and output of a system. The most commonly used
ANN is the multi layer perceptron (MLP) [1,2]. ANN is trained using
a data set which is compatible with input–output relation of system
to be modeled. Training is usually performed using back propaga-
tion (BP) algorithm. In recent years evolutionary algorithms are also
used for ANN training as an alternative to BP algorithm.

For example population-based particle swarm optimization
(PSO) [3], capable of stochastic search, has been successfully uti-
lized in neural network training in addition to its usage in function
optimization and fuzzy system control [4–7].

In recent years FPGAs, capable of parallel processing, are emerg-
ing as a predominant embedded system platform for many ANN
applications [8–13]. In the literature numerous of hardware based
ANN implementations on FPGAs with offline training [1,14–17]
and online training [18–20] are reported. In these implementations
different number formats such as fixed-point numbers with differ-
ent bit width [16,18,20], floating-point numbers [1,14,17–19] and
integer numbers [15] are utilized. Nonlinear logarithmic sigmoid
[14–19] and nonlinear hyperbolic tangent [1,16,20] are employed

∗ Corresponding author.
E-mail addresses: ali.cavuslu@kocsavunma.com.tr (M.A. Cavuslu),

cihan.karakuzu@bilecik.edu.tr (C. Karakuzu), fkarakaya@nigde.edu.tr,
karakuzu@bilecik.edu.tr (F. Karakaya).

as activation function. To implement nonlinear activation functions
on hardware several approaches have been proposed: look-up table
[15,20], piecewise-linear [1,16,18], parabolic [14] and functional
[17,19].

In this work we present FPGA implementation of a system iden-
tification module based on ANN with PSO based online training.
ANN and its PSO based online training module implemented in
single precision floating-point number format and neural cell acti-
vation functions are implemented using functional approaches. In
functional approach a divider is used in addition to adder and mul-
tiplier when compared to piecewise-linear and parabolic approach.
Divider usage could be considered as the disadvantage of func-
tional approach, but this approach has several advantages: (i)
contrary to look-up table approach, no memory needed (ii) con-
trary to piecewise-linear approach, no control statements needed.
The most important contribution of this work is the modified veloc-
ity update function of the PSO. In this paper authors proposed to
add an extra term to the function which reduces the possibility
of stucking in a local minimum during training. The experimental
results indicate that the PSO algorithm utilizing the modified veloc-
ity update function converges faster and produces more accurate
results.

The rest of the paper is organized as follows. Section 2 pro-
vides brief introduction to standard PSO and proposed improved
PSO. Section 3 describes hardware implementation of ANN and
its PSO based training module. Experimental results and perfor-
mance of proposed approach in hardware are given in Section 4.
The comparison results of the proposed improved PSO with other
methods are given in Section 5 and the conclusions are given in
Section 6.

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2012.03.022

dx.doi.org/10.1016/j.asoc.2012.03.022
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:ali.cavuslu@kocsavunma.com.tr
mailto:cihan.karakuzu@bilecik.edu.tr
mailto:fkarakaya@nigde.edu.tr
mailto:karakuzu@bilecik.edu.tr
dx.doi.org/10.1016/j.asoc.2012.03.022

2708 M.A. Cavuslu et al. / Applied Soft Computing 12 (2012) 2707–2718

Fig. 1. PSO based ANN training and dynamic system identification architecture.

2. Standard and proposed modified PSO

PSO, inspired from social interactions among animals, is a high
performance optimizer. PSO performs search using a population of
particles. Each particle is directed to the most significant parts of
the search space as a result of interactions between particles. The
algorithm starts with randomly assigned particles. In every iter-
ation the velocity and the location of particles are updated. Each
particle’s position is evaluated as a possible solution candidate. In
a swarm with N particles, the position of the ith particle is defined
as a vector as given in Eq. (1). D is the dimension of the search
space.

−→pi = [pi1, pi2, pi3, . . . , piD] (1)

Each particle memorizes its own best position that it has discov-
ered, called the local best (pb, Eq. (2)), and it also knows the best
position discovered by any particle, called the global best (gb, Eq.
(3)).

−→pb = [pb1, pb2, pb3, . . . , pbD] (2)

−→gb = [gb1, gb2, gb3, . . . , gbD] (3)

The rate of change in particle position is called particle velocity
and for the ith particle it is given as in Eq. (4).

−→vi = [vi1, vi2, vi3, . . . , viD] (4)

At each iteration particle velocity is computed to determine
the location of the particle at the next iteration. Particle velocity
computing function, given in Eq. (5), have been proposed in [3] to
compute the new velocity of each particle.

vi(n + 1) = �[vi(n) + ˛1r1(pb,i − pi(n)) + ˛2r2(gb,i − pi(n))] (5)

˛1, ˛2 are called learning constants; r1 and r2 are uniformly dis-
tributed random numbers in [0–1) range; � is constriction factor.
The most common problem with Eq. (5) is the possibility of stuck-
ing in a local minimum and as a result immature termination of the
search. The authors of this paper propose an additional parameter

to Eq. (5) which reduces the possibility of stucking in a local min-
imum. The proposed new velocity update function is given in Eq.
(6).

vi(n + 1) = �[vi(n) + ˛1r1(pb,i − pi(n))

+ ˛2r2(gb,i − pi(n))] + [˛3�(n)] (6)

˛3 is also called additive learning constant; � is a normally dis-
tributed random number vector. The value of ˛3 is chosen according
to the inequality given in Eq. (7). Where X is the matrix of input
samples to be used for modeling or identification task.

˛3 � 1
max{eig(XXT)} (7)

After determining range of ˛3� term in modified PSO, ˛3� term
is represented as power of two [−2−z 2−z] (z is an integer number)
to expedite the handling in hardware. As stated before, the last term
in Eq. (6) prevents particles from stucking in a local minimum and it
permits a more detailed search of the space. After the determination
of the particle velocity, the new location of the particle is calculated
using Eq. (8).

pi(n + 1) = pi(n) + vi(n + 1) (8)

3. PSO based ANN training ON FPGA

In this section, the details of PSO based ANN training on FPGA
is described. The block diagram of the proposed architecture with
the intention of dynamic system identification is shown in Fig. 1.
PSO based ANN training on FPGA has four main stages as given in
Fig. 2. Short description of these four stages is as follows.

3.1. Stage1: assignment of initial values

In FPGA implementation, the swarm (P), local best particles (Pb),
global best particle (gb), particle velocities (Vm) and fitness values
(En) are stored in block RAMs. For P, Pb and Vm matrices a block RAM
in N × D dimensions, for gb vector a block RAM in 1 × D dimension,

Download English Version:

https://daneshyari.com/en/article/496551

Download Persian Version:

https://daneshyari.com/article/496551

Daneshyari.com

https://daneshyari.com/en/article/496551
https://daneshyari.com/article/496551
https://daneshyari.com

