
Recalling the rationale of change from process model revision
comparison – A change-pattern based approach

Selim Erol
Institute of Management Science, Department of Industrial and Systems Engineering, Vienna University of Technology, Austria

A R T I C L E I N F O

Article history:
Received 30 January 2017
Accepted 10 February 2017
Available online xxx

Keywords:
Business process modeling
Change patterns
Pattern detection
Process-aware information systems

A B S T R A C T

Industrial enterprises embody a rather large and heterogeneous business process landscape including
hundreds to thousands of both manufacturing and supporting processes. To keep records of their
business process architecture enterprises use informal and as well formal process descriptions. Formal
process descriptions are often referred to as process models and are gaining increasing importance as a
basis for process-aware enterprise information systems and automation purposes. Therefore process
models are continuously adapted to changing business requirements. Keeping track of model changes is
an important requirement to be able to understand past decisions and their impact on the process
landscape. Hence, keeping track of changes is not easy if changes are not associated with the original
rationale and the order of atomic changes is not preserved anymore. In this paper we present an approach
that builds upon the concept of change patterns. For this purpose we systematically examined revision
histories from a large process model collection and described them through a pattern language. In
addition, we propose an algorithm to detect such change patterns. Our approach has been implemented
in a modeling environment and has been evaluated with regard to effectiveness and performance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modern industrial enterprises reveal a rather large business
process landscape including hundreds to thousands value-adding
manufacturing and as well supporting processes. Therefore
enterprises try to keep records of their business process
architecture in some way. On the one hand informal process
descriptions are used for the goal of documentation, analysis,
knowledge transfer and governance. On the other hand business
processes are described through (semi-)formal languages (e.g. EPC
[1], BPMN [2]) which potentially allow for their automation and
orchestration of related software services and applications [3,4].
The latter kind of artifacts, commonly referred to as process
models, are created, stored and maintained by means of software-
based modeling environments (e.g. ARIS Business Architect1).
These modeling environments typically consist at least of a model
editor and a model repository. The repository is used to store larger
collections of process models, enable version management and
efficient model retrieval [5]. Such process model repositories often
contain hundreds to thousands of process model artifacts and – in

case some kind of versioning exists – also a multiple of model
versions.

In practice, process models are developed in an iterative
manner. From vague ideas of the process in focus to informal
process descriptions and finally deployable workflow specifica-
tions and so forth [6]. Process models are also continuously
adapted to changing business requirements. Keeping track of
model changes is typically accomplished by a change log or a
revision history. In the first case changes are recorded by storing at
least the order of operations, the type and the target object. Thus, a
sequence of change operations is obtained that exactly shows the
actions a modeler has undertaken to change a model. In the case of
the revision history approach snapshots at discrete points in time
are taken and stored along with a time-stamp. Model changes are
then reproducible by comparing two subsequent revisions
revealing only the substantial changes but hiding all intermediate
changes that led to the final change. Both approaches have their
advantages and disadvantages which have been broadly discussed
in literature, e.g. in [7]. In practice, the revision history approach
has gained ground in both model and software development tools.
Versioning systems like SVN2 are exemplary implementations of

E-mail address: selim.erol@tuwien.ac.at (S. Erol).
1 http://www.aris.com. 2 https://subversion.apache.org.

http://dx.doi.org/10.1016/j.compind.2017.02.003
0166-3615/© 2017 Elsevier B.V. All rights reserved.

Computers in Industry 87 (2017) 52–67

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier .com/ locat e/compind

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2017.02.003&domain=pdf
mailto:selim.erol@tuwien.ac.at
http://www.aris.com
https://subversion.apache.org
http://dx.doi.org/10.1016/j.compind.2017.02.003
http://dx.doi.org/10.1016/j.compind.2017.02.003
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind

the revision history approach. One of the drawbacks of the revision
history approach is that the rationale of changes to a process model
is not easily recoverable if not documented explicitly or implicitly
through a change log. By rationale the idea, intention and reason
for a change is meant which leads to an operational change of a
process model artifact. The above mentioned problem is due to the
fact that atomic changes resulting from a change intention do not
have an envelope that indicates the rationale. Rather a change
rationale needs to be “guessed” a posteriori from a set of unrelated
atomic change operations which have been derived from a simple
revision comparison.

To tackle the above mentioned challenges we have chosen an
approach that builds upon the concept of change patterns
formulated in [8] and extends this concept in various ways. First,
by conducting an explorative study of revision histories from a two
long-term case-studies or process modeling and the subsequent
classification of compound changes through change patterns.
Second, by introducing a pattern language allowing the description
of typical compound changes (change patterns) in an easy,
practicable but still comprehensible way. Second, by formulating
algorithms for recovering compound changes from revision
comparisons. Finally, through a prototypical implementation in
a respective modeling environment and its subsequent evaluation.

In the subsequent sections of this paper the approach for
describing change patterns through a pattern language and related
detection algorithms are described in detail. In Section 2 we
discuss basic concepts of revision history, revision comparison and
compound changes. In Section 3 we present the pattern based
approach to specifying compound changes. Section 4 is dedicated
to the formulation of respective detection algorithms. In the last
section a prototypical implementation is presented along with it's
evaluation. Results are summarized and discussed in the last
section.

2. Basic concepts

2.1. Process model

For the following considerations a simple meta-model for
process models has been used. Accordingly, a process model M is a
finite set of model elements _m 2 M where each model element is
classified into three distinct types of model elements a..activity, g..
gateway, e..sequence flow edge. Instances of such classes form
subsets of M: the set of all activities A = {a0. . an�1}, the set of all
gateways G = {g0. . am�1}, the set of all edges E = {e0. . ek�1} where
n; m; k 2 N. Thus, the set of model elements M can be described as a
three tuple (A, G, E). Where A is a finite set of activities, G is a finite
set of logical gateways and E is a finite set of directed sequence flow
edges. E represents different sequences of A and G. To be precise it
can specified as a subset E � (A � G) [(G � A) [(A � A) [(G � G).
Different types of gateways { �, +, � } may exist where type T(gi) =�
refers to an exclusive gateway, type T(gi) =+ refers to a parallel
gateway and type T(gi) =� refers to an inclusive gateway. Gateways
are also classified according to their role in the control flow. We
distinguish the set of split gateways Gswhich includes all gateways
gi that have at least two outgoing sequence flow edges and have
exactly one ingoing sequence flow edge, formally Gs = { 8 gi2 G j
OUT(gi) � 2 ^ IN(g) = 1, 0 � i � k � 1} where OUT is a function that
counts all outgoing and IN is a function that counts all ingoing
edges for a given gateway node and a set of join gateways Gj that is
defined as Gj = { 8 gi2 G j IN(gi) � 2 ^ OUT(gi) = 1, 0 � i � k � 1}. Fig. 1
shows a UML3 class diagram of the types of model elements
incorporated for subsequent considerations. Note that we use a

rather general and relaxed meta-model and formalization. This is
due to the requirement that we want to cover as well process
models in progress that are not complete in the sense of
executability. We also did not include events in the meta-model
as we wanted to provide a general meta-model that abstracts from
concrete modeling languages and keeps the semantics simple to
have more explanatory power. The formal description of the meta-
model provided above builds upon the work of [9].

2.2. Process model change

Process models are created through a model editing software
and are maintained in process model repositories [10,11,5].
Changes to process models are performed through their graphical
representations. Such graphical representations usually consist of
shapes and edges of different types to represent the semantics of
process model elements. E.g. a rectangular shape with rounded
corners to represent a task. When an agent changes a process
model then it performs a set of subsequent atomic change
operations until a desired new state of the model is reached. These
atomic change operations are the result of some change rationale –

an agents intent to change a process for some reason. The rationale
of change therefore can be associated a set of atomic change
operations that follow some order. The set of compound atomic
change operations – a compound change – can be defined as a
tuple cc = (O, Rel) consisting of an unordered set of atomic change
operations O = {o0, o1, . . . , ok} and a set of relations Rel = {rel0, rel1,
. . . , relm�1} where k; m 2 N and m � |O| � 1 that determine the
order atomic change operations have been executed. Each atomic
change operation o ¼ oið _m; type; argsÞ is defined through it's target
model element _m, the type of operation (“add”, “delete”, “modify”)
and optional arguments args.

2.3. Process model revisions and revision comparison

A revision history of a process model represents different states
of a process model over time. These different states of a process
model result from interactions of some kind of agent with the
process model artifact leading to respective changes. The scenario
depicted in Fig. 2 shows two model interactions that take place in
sequence. The first modeler uA opens (checks out) a model revision
ri from a repository at point in time tA,s, changes the model, and
submits (checks in) the changes to the repository at point in time
tA,e which leads to model revision ri+1. Subsequently, a second
modeler uB accesses the model revision ri+1, opens it at a point in
time tB,s, changes it and submits as well his new model revision at
point in time tB,e which leads to a revision ri+2. This scenario

Fig. 1. Meta-model of process models as used in subsequent considerations.

3 http://www.uml.org.

S. Erol / Computers in Industry 87 (2017) 52–67 53

http://www.uml.org

Download English Version:

https://daneshyari.com/en/article/4965593

Download Persian Version:

https://daneshyari.com/article/4965593

Daneshyari.com

https://daneshyari.com/en/article/4965593
https://daneshyari.com/article/4965593
https://daneshyari.com

