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a b s t r a c t

Nonlinear normal modes offer a solid theoretical framework for interpreting a wide class of nonlinear
dynamic phenomena. However, their computation for large-scale models can be time consuming, partic-
ularly when nonlinearities are distributed across the degrees of freedom. In this paper, the nonlinear nor-
mal modes of systems featuring distributed geometric nonlinearities are computed from reduced-order
models comprising linear normal modes and modal derivatives. Modal derivatives stem from the differ-
entiation of the eigenvalue problem associated with the underlying linearised vibrations and can there-
fore account for some of the distortions introduced by nonlinearity. The cases of the Roorda’s frame
model, a doubly-clamped beam, and a shallow arch discretised with planar beam finite elements are
investigated. A comparison between the nonlinear normal modes computed from the full and reduced-
order models highlights the capability of the reduction method to capture the essential nonlinear phe-
nomena, including low-order modal interactions.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of nonlinear phenomena is often neglected in
structural dynamics. However, modern engineering designs with
stringent constrains on weight lead to flexible structures in which
nonlinear geometric effects are significant and can no longer be
neglected [1]. Nonlinearity poses important challenges as novel
dynamic phenomena that cannot be treated with linear analysis
can arise. An example is modal interaction where the nonlinear
couplings between linear normal modes (LNMs) (also often referred
to as vibration modes) trigger energy exchanges between modes
that can potentially affect the integrity of the structure [2]. From
another perspective, nonlinear dynamic phenomena can also be
exploited to improve performance as, for instance, in passive
micro-mechanical frequency dividers [3] and acoustic switches
and rectifiers [4].

Pioneered in the 1960s by Rosenberg [5], the concept of nonlin-
ear normal modes (NNMs) has proved useful to address a number of
nonlinear phenomena such as mode localisation, mode bifurcation
and internal resonance. NNMs can be defined as non-necessarily
synchronous periodic oscillations of the conservative equations of

motion of the system in question [6]. In the last decade, a number
of numerical methods were developed to compute NNMs (see Ref.
[7] for a review). Although some of these methods were success-
fully applied to real-life structures [8,2], the computational cost
associated with the calculation of NNMs for large-scale models
remains an important issue preventing the wider spread of this
nonlinear analysis tool in industry. When the structure is linear
with localised nonlinearities (as in Refs. [8,2]), classical linear
reduction methods, such as the Craig-Bampton [9] or the Rubin-
Mc Neal [10] techniques, can be used to accurately and effectively
reduce the dimensionality of the linear system, leading to a signif-
icant speed-up of the NNM calculation. However, when the system
possesses nonlinearities distributed among all the degrees of free-
dom (DOFs), as, for instance, when nonlinear geometric effects
caused by finite displacements and rotations are present, such lin-
ear reduction approaches proved ineffective.

A considerable amount of research effort is directed towards the
accurate prediction of the responses of nonlinear geometric sys-
tems using reduced-order models (ROMs). Generally, ROMs are
obtained by detecting a subspace spanned by a reduced-order basis
(ROB) on which the solution evolves and then by projecting the
equation of motion on another basis of the same size. For structural
applications characterised by symmetric jacobians, the reduction
and projection bases often coincide and the method is termed
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Galerkin projection. Regardless of how the ROB is built, it is crucial
to properly account for the nonlinear bending-stretching and
torsion-stretching couplings triggered by the finite deflections
and rotations. Reduction methods differ in the way these couplings
are accounted for in the ROB. In a recent approach, termed implicit
condensation and expansion (ICE) [11], membrane displacements
are recovered from a basis of nonlinear static solutions. The com-
putation of NNMs using this ICE method was investigated in Ref.
[12]. An alternative approach to account for the membrane dis-
placements is the concept ofmodal derivatives (MDs). Previous con-
tributions [13–18] have shown using transient analysis that the
essential distortions introduced by nonlinearity can be captured
by combining LNMs and MDs in a single ROB. As it will be made
clear in this paper, one of the merits of this approach lies in the sys-
tematic way MDs are derived, once the relevant LNMs have been
selected for the linearised dynamics.

The transient analysis of complex nonlinear systems using, e.g.,
Newmark’s time stepping method, is well-established. However, in
addition to their substantial computational cost, time series do not
bring much detailed information about the dynamics of a nonlinear
system. In this context, it is therefore valuable to calculate features,
such as nonlinear frequency response curves and NNMs, which give
more physical insight. For instance, it can be shown that resonant
vibrations, which are key to the practitioner, occur in the vicinity
of nonlinear normal modes. NNMs are also able to capture modal
interactions. So calculating NNMs and related frequencies is not
just an intellectual exercise per se, but it is of significant engineer-
ing relevance. In this paper, the computation of NNMs of planar,
geometrically nonlinear structures discretised using the finite ele-
ment (FE) method is investigated. The FE models are reduced via
Galerkin projection, using a ROB composed of LNMs and MDs. The
accuracy of the reduction in capturing the NNMs, including modal
interactions, is discussed. The paper is organised as follows. Sec-
tion 2 introduces the governing equations of motion and presents
the underlying theory of Galerkin projection techniques. The con-
cept of MDs is also reviewed. The method used for computing
NNMs is briefly summarised in Section 3. In Section 4, three numer-
ical examples of geometric nonlinear models are presented: the
Roorda’s frame model (Section 4.1), a doubly-clamped beam (Sec-
tion 4.2), and a shallow arch (Section 4.3). The NNMs obtained for
the full and reduced models are compared in order to demonstrate
the effectiveness of the proposed approach.

2. Governing equations and model reduction using Galerkin
projection

The equations of motion of a generic free vibrating, undamped
system discretised using the FE method can be written as

M€yðtÞ þ KyðtÞ þ fnlðyðtÞÞ ¼ 0;
yð0Þ ¼ y0;

_yð0Þ ¼ _y0;

8><
>: ð1Þ

where yðtÞ 2 Rn is the generalised displacement vector, M 2 Rn�n

and K 2 Rn�n are the linear mass and stiffness matrices, respec-

tively; fnlðyðtÞÞ : Rn # Rnis the nonlinear force vector. The initial
conditions for the displacement and velocity vectors are denoted
by y0 and _y0, respectively.

In Eq. (1), internal forces are explicitly separated in a linear and

nonlinear part. In this work, the nonlinear forces fnl emanate from
geometric nonlinearities, modelled with the von-Karman kine-
matic assumptions that relate axial strains to the square of rota-
tions [19]. This model yields discretised forces that are up to
cubic order in y. The von-Karman kinematic model is adequate
for a large class of problems featuring elastic deflections of the

order of the thickness. The numerical examples considered in this
study focus on planar structures modelled with beam elements.
However, the presented treatment is general and able to handle
tridimensional problems, such as shells and continuum solids.
From this point on, the time dependency is omitted for clarity.

In practical applications, the size n of Eq. (1) is usually large. The
number of unknowns can be reduced to k, with k � n, by project-
ing the generalised displacement vector y on a suitable time-
independent ROB W 2 Rn�k as:

y � Wq; ð2Þ
where qðtÞ 2 Rk is the vector of reduced displacements. The govern-
ing equations can then be projected on the chosen basis W in order
to make the equilibrium residual orthogonal to the subspace in
which the solution q is sought. This results in a reduced system of
k nonlinear equations:

WTMW€qþWTKWqþWTfnlðWqÞ ¼ 0; ð3Þ
or, equivalently,

M̂€qþ K̂qþ f̂nlðWqÞ ¼ 0: ð4Þ
The reduced mass matrix M̂ and stiffness matrix K̂ do not depend
on q and can be calculated offline. We refer to the numerical solu-
tion y of Eq. (1) as the full solution, while u ¼ W~q is called reduced
solution, ~q being the solution of Eq. (4). The key of a good reduction
method is to find a suitable ROB W that is able to accurately repro-
duce the full solution.

2.1. Reduction basis for geometrically nonlinear systems

The projection of the equations of motion on a basis formed
with a reduced set of LNMs is a well-known approach in linear
structural dynamics. Its main advantage is that the resulting
ROM consists of a set of uncoupled equations that can be solved
separately. For nonlinear systems, such an approach is limited
because LNMs do not decouple the equations of motion and are
able, by definition, to reproduce the motion only in a small neigh-
bourhood of the equilibrium. Therefore LNMs do not constitute an
effective reduction basis when the dynamics features large dis-
placements. Some pioneering works proposed to update the ROB
by computing vibration modes around arbitrary dynamic configu-
rations attained by the system as the time integration proceeds
[20–22]. However, such linear modes extracted about an arbitrary,
non-equilibrium configuration do not represent the local dynamics
of the motion; therefore it is not surprising that these approaches
suffered from basis updates that were frequent enough to compro-
mise the effectiveness of the method.

The ideal situation is to have a constant ROB which is able to
account for the nonlinear behaviour. In that respect, MDs proved
to be an effective addition to a ROB basis of LNMs, allowing the
accurate transient analysis of geometrically nonlinear structures
[23]. MDs stem from the directional derivatives of the linear eigen-
value problem in the direction of the LNMs. The derivation and
computation of MDs are briefly reviewed for completeness.

We start by assuming a nonlinear mapping C between the full
solution y 2 Rn and a vector of reduced linear modal coordinates
q 2 Rk,

y � yeq ¼ CðqÞ; ð5Þ
where yeq is the equilibrium configuration, and k � n. A Taylor ser-
ies expansion of Eq. (5) leads to

y � yeq ¼
@C
@qi

����
eq

qi þ
1
2

@2C
@qi@qj

�����
eq

qiqj þ � � � ; ð6Þ
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