
Applied Soft Computing 12 (2012) 2817–2827

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

Simulation and evaluation of fuzzy differential equations by fuzzy neural network

Maryam Mosleh1, Mahmood Otadi ∗

Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firuozkooh, Iran.

a r t i c l e i n f o

Article history:
Received 27 May 2010
Received in revised form 14 February 2011
Accepted 18 March 2012
Available online 5 April 2012

Keywords:
Fuzzy neural networks
Fuzzy differentialequations
Feedforward neural network
Learning algorithm

a b s t r a c t

In this paper, a novel hybrid method based on learning algorithm of fuzzy neural network for the solution
of differential equation with fuzzy initial value is presented. Here neural network is considered as a part
of large field called neural computing or soft computing. The model finds the approximated solution of
fuzzy differential equation inside of its domain for the close enough neighborhood of the fuzzy initial
point. We propose a learning algorithm from the cost function for adjusting of fuzzy weights. Finally, we
illustrate our approach by numerical examples and an application example in engineering.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Proper design for engineering applications requires detailed
information of the system-property distributions such as tem-
perature, velocity, and density in space and time domain [8–10].
This information can be obtained by either experimental mea-
surement or computational simulation. Although experimental
measurement is reliable, it needs a lot of labor efforts and time.
Therefore, the computational simulation has become a more and
more popular method as a design tool since it needs only a fast
computer with a large memory. Frequently, those engineering
design problems deal with a set of differential equations (DEs),
which have to numerically solved such as heat transfer, solid
and fluid mechanics. Numerical methods of predictor–corrector,
Runge-Kutta, finite difference, finite element, finite volume, bound-
ary element, spectral and collocation provide a strategy by which
we can attack many problems in applied mathematics, where we
simulate a real-word problem with a differential equation, subject
to some initial or boundary conditions. In the finite difference and
finite element methods we approximate the solution by using the
numerical operators of the function’s derivatives and finding the
solution at specific preassigned grids [49]. The linearity is assumed
for the purposes of evaluating the derivatives. Although such an
approximation method is conceptually easy to understand, it has
a number of shortcomings. Obviously, it is difficult to apply for
systems with irregular geometry or unusual boundary conditions.

∗ Corresponding author. Tel.: +98 912 6964202.
E-mail addresses: mosleh@iaufb.ac.ir (M. Mosleh), otadi@iaufb.ac.ir (M. Otadi).

1 Tel.: +98 912 6076308.

Predictor–corrector and Runge-Kutta methods are widely applied
over preassigned grid points to solve ordinary differential equa-
tions [31]. In the spectral and collocation approaches a truncated
series of the specific orthogonal functions (basis functions) are used
for finding the approximated solution of the DE. In the spectral and
collocation techniques the role of trial functions as a basis func-
tion is important. The trial functions used in spectral methods are
chosen from various classes of Jacobian polynomials [18], still the
discretization meshes are preassigned. Neural network model is
used to approximate the solutions of DEs for the entire domains.
In 1990 the authors of [33] used parallel computers to solve a first
order differential equation with Hopfield neural network models.
Meade and Fernandez [38,39] solved linear and nonlinear ordinary
differential equations using feed forward neural networks archi-
tecture and B1-splines. Leephakpreeda [34] applied neural network
model and linguistic model as universal approximators for any non-
linear continuous functions. With this outstanding capability, the
solution of DEs can be approximated by the appropriate neural
network model and linguistic model within an arbitrary accuracy.

When a physical problem is transformed into a deterministic
initial value problem{

dy(x)
dx

= f (x, y),

y(a) = A,
(1)

We usually cannot be sure that this modelling is perfect. The ini-
tial value may not be known exactly and the function f may contain
unknown parameters. If the nature of errors is random, then instead
of a deterministic problem (1) we get a random differential equa-
tion with random initial value and/or random coefficients. But if the
underlying structure is not probabilistic, e.g., because of subjective

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2012.03.041

dx.doi.org/10.1016/j.asoc.2012.03.041
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mosleh@iaufb.ac.ir
mailto:otadi@iaufb.ac.ir
dx.doi.org/10.1016/j.asoc.2012.03.041

2818 M. Mosleh, M. Otadi / Applied Soft Computing 12 (2012) 2817–2827

choice, then it may be appropriate to use fuzzy numbers instead of
real random variables.

The topic of Fuzzy Differential Equations (FDEs) has been rapidly
growing in recent years. The fuzzy initial value problem have been
studied by several authors [1,2,6,7,44,40,11,14,51]. The concept of
fuzzy derivative was first introduced by Chang and Zadeh [13], it
was followed up by Dubois and Prade [15] who used the extension
principle in their approach. Other methods have been discussed by
Puri and Ralescu [43] and by Goetschel and Voxman [17]. Fuzzy
differential equations were first formulated by Kaleva [28] and
Seikkala [46] in time dependent form. Kaleva had formulated fuzzy
differential equations, in terms of Hukuhara derivative [28]. Buck-
ley and Feuring [12] have given a very general formulation of a fuzzy
first-order initial value problem. They first find the crisp solution,
make it fuzzy and then check if it satisfies the FDE. In [41,16], inves-
tigated the existence and uniqueness of solution for fuzzy random
differential equations with non-lipschitz coefficients and fuzzy dif-
ferential equations with piecewise constant argument.

In this work we propose a new solution method for the approx-
imated solution of fuzzy differential equations using innovative
mathematical tools and neural-like systems of computation. This
hybrid method can result in improved numerical methods for solv-
ing fuzzy initial value problems. In this proposed method, fuzzy
neural network model (FNNM) is applied as universal approxi-
mator. We use fuzzy trial function, this fuzzy trial function is a
combination of two terms. A first term is responsible for the fuzzy
initial while the second term contains the fuzzy neural network
adjustable parameters to be calculated. The main aim of this paper
is to illustrate how fuzzy connection weights are adjusted in the
learning of fuzzy neural networks by the back-propagation-type
learning algorithms [24,27] for the approximated solution of fuzzy
differential equations. Our fuzzy neural network in this paper is a
three-layer feedforward neural network where connection weights
and biases are fuzzy numbers. The remaining part of the paper is
organized as follows. In Section 2, we discuss some basic defini-
tions. Also, we briefly review relevant definition of the architecture
of fuzzy neural networks. Section 3 gives details of problem formu-
lation and the way to construct the fuzzy trial function and training
of fuzzy neural network for finding the unknown adjustable
coefficients. Also, training of partially fuzzy neural network for
finding the unknown adjustable coefficients and numerical exam-
ples are discussed in this section and conclusion is in final
section.

2. Preliminaries

In this section the most basic notations used in fuzzy calculus
are introduced. We start by defining the fuzzy number.

Definition 1. A fuzzy number is a fuzzy set u : R
1 −→ I = [0, 1]

which satisfies

i. u is upper semi-continuous.
ii. u(x) = 0 outside some interval [a, d] .

iii. There are real numbers b, c : a ≤ b ≤ c ≤ d for which

1. u(x) is monotonic increasing on [a, b],
2. u(x) is monotonic decreasing on [c, d],
3. u(x) = 1, b, ≤ x ≤ c.

The set of all the fuzzy numbers (as given by Definition 1) is
denoted by E1.

An alternative definition which yields the same E1 is given by
Kaleva [28].

Fig. 1. Multiple layer feed-forward FNNM.

Definition 2. A fuzzy number u is a pair (u, u) of functions
u(r), u(r); 0 ≤ r ≤ 1 which satisfy the following requirements:

i. u(r) is a bounded monotonic increasing left continuous function
on (0, 1] and right continuous at 0.

ii. u(r) is a bounded monotonic decreasing left continuous function
on (0, 1] and right continuous at 0.

iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.

This fuzzy number space as shown in [50], can be embedded into
the Banach space B = C[0, 1] × C[0, 1] where the metric is usually
defined as

‖(u, v)‖ = max{ sup
0≤r≤1

|u(r)|, sup
0≤r≤1

|v(r)|},

for arbitrary (u, v) ∈ C[0, 1] × C[0, 1].
Artificial neural networks are an exciting form of artificial intel-

ligence which mimic the learning process of the human brain in
order to extract patterns from historical data [4,47]. For many years
this technology has been successfully applied to a wide variety
of real-word applications [42]. Simple perceptrons need a teacher
to tell the network what the desired output should be. These are
supervised networks. In an unsupervised net, the network adapts
purely in response to its inputs. Such networks can learn to pick
out structure in their input. Fig. 1 shows typical three-layered per-
ceptron. Multi-layered perceptrons with more than three layers,
use more hidden layers [21,29]. Multi-layered perceptrons corre-
spond the input units to the output units by a specific nonlinear
mapping [48]. From Kolmogorov existence theorem we know that
a three-layered perceptron with n(2n + 1) nodes can compute any
continuous function of n variables [22,35]. The accuracy of the
approximation depends on the number of neurons in the hidden
layer and does not depend on the number of the hidden layers [32].

Before describing a fuzzy neural network architecture, we
denote real numbers and fuzzy numbers by lowercase letters (e.g.,
a, b, c, . . .) and uppercase letters (e.g., A, B, C, . . .), respectively.

Our fuzzy neural network is a three-layer feedforward neural
network where connection weights, biases and targets are given
as fuzzy numbers and inputs are given as real numbers. For conve-
nience in this discussion, FNNM with an input layer, a single hidden
layer, and an output layer in Fig. 1 is represented as a basic struc-
tural architecture. Here, the dimension of FNNM is denoted by the
number of neurons in each layer, that is n × m × s, where m, n and
s are the number of neurons in the input layer, the hidden layer
and the output layer, respectively. The architecture of the model
shows how FNNM transforms the n inputs (x1, . . ., xi, . . ., xn) into
the s outputs (Y1, . . ., Yk, . . ., Ys) throughout the m hidden neurons
(Z1, . . ., Zj, . . ., Zm), where the cycles represent the neurons in each
layer. Let Bj be the bias for neuron Zj, Ck be the bias for neuron Yk,

Download English Version:

https://daneshyari.com/en/article/496560

Download Persian Version:

https://daneshyari.com/article/496560

Daneshyari.com

https://daneshyari.com/en/article/496560
https://daneshyari.com/article/496560
https://daneshyari.com

