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a b s t r a c t

This paper presents a novel time integration algorithm for solving linear structural dynamic problems in
the framework of the high-order collocation method. When two Gauss points in the integration interval
are selected as collocation points, both an A-stable algorithm with third order accuracy and a non-
dissipative algorithm with fourth order accuracy can be derived from a second order collocation polyno-
mial. The only difference is that the former obtains a numerical solution at the middle point of the time
interval, while the latter has a solution at the end of the interval. A new composite method is established
through applying these two algorithms alternately, which combines the advantages of the numerical dis-
sipation property of the third order algorithm and the high-order accuracy of the fourth order algorithm.
The usage frequency of the two algorithms during the whole step-by-step integration procedure is an
important parameter affecting the numerical dissipation, which is investigated in this study. As the alge-
braic equations systems solved by the two algorithms are exactly same, no extra computation effort is
introduced.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Step-by-step direct time integration algorithms have been
widely used in structural dynamics analysis [1–3]. The time inte-
gration algorithms can be classified into two categories, explicit
algorithms [4–6] and implicit algorithms [7–9]. Explicit algorithms
calculate system response in the next time-step from displace-
ments, velocities, and accelerations in the current and previous
time-steps. Explicit methods are usually conditional stable. The
time-step has to be restricted below a critical value to maintain
numerical stability. Implicit algorithms obtain the response in
the next time-step by solving algebra equations systems, which
involve the responses in the current, previous and next time-
steps. Implicit algorithms need more computational cost in each
time-step, however, basically maintain unconditional stability,
which indicates that implicit algorithms can use a lager time-
step compared with conditionally explicit stable schemes. The
Newmark method [10], Wilson� h method [11], CH � a method
[7], HHT � a method [12], and WBZ � a method [12] are consid-
ered as implicit methods. However, most widely used explicit
and implicit methods only have 2nd-order accuracy, which may
result in unacceptable accumulation of error in long-term simula-

tions. Therefore, it is necessary to develop high-order algorithms
with unconditional stability.

Many high-order algorithms have been proposed using differ-
ent methodologies [13,14]. Based on the Galerkin methodology,
Fung generalized the classical diagonal and first sun-diagonal
Padé approximants to the exponential function using the complex
time step method [15,16], the least-squares method [17], the
weighted residual method [13,14], the collocation method [18]
and the differential quadrature method [19,20]. Mancuso and
Ubertini [21,22] obtained high-order unconditional stable algo-
rithms based on the collocation and Nørsett methodologies. Algo-
rithms based on p-order collocation polynomials require solving
p sets of linear algebraic equations in each time-step. Although
these approaches lead to desired accuracy, they basically need
solving a large and complex system of algebraic equations. There-
fore, special care must be taken in solving the system of algebraic
equations so that these methods can be efficiently implemented.

In the numerical analysis of standard finite-element semi-
discrete systems, only a few low-frequency modes approximate
the original continuous system. The quality of numerical algo-
rithms depends crucially on their dissipative property. Fung [18]
shows that A-stable algorithms with 3rd-order accuracy and a
non-dissipative algorithm with 4th-order accuracy can be devel-
oped respectively using two collocation points. However, the
non-dissipative algorithm with 4th-order accuracy does not have
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algorithmic damping to dissipate fictitious high-frequency
responses. In this paper, an A-stable algorithm with 3rd-order
accuracy and a non-dissipative algorithm with 4th-order accuracy
are alternately employed to establish a composite method, which
has high accuracy and numerical dissipation property. In addition,
as the algebraic equations system obtained by both algorithms of
order 3 and order 4 are exactly same; the proposed composite
algorithm doesn’t introduce extra computational work. Compared
with the 3rd-order algorithm, the proposed method improves the
computational accuracy. Furthermore, the coefficient matrix of
the algebraic equations system obtained by the proposed compos-
ite method shows a lot of specific properties after elimination and
simplification operations. However, conventional direct solution
methods cannot take advantage of these benefits to save computa-
tional cost. Particular solution methods for the algebraic equations
system are presented considering two types of coefficient matrices.

2. Collocation methods

The motion equation of a discretized linear structure with n-
degree-of-freedom can be described by,

M€xþ C _xþ Kx ¼ FðtÞ ð1Þ
with the initial condition, xð0Þ ¼ x0; _xð0Þ ¼ _x0, whereM, C, K are the
mass, damping, and stiffness matrices, respectively; FðtÞ is the vec-
tor of externally applied loads; and x, _x, €x are the displacement,
velocity and acceleration vectors of the system.

Assuming q ¼ x, p ¼ M _q, z ¼ q
p

� �
, Eq. (1) can be transformed

into a first order differential equation, namely

_q ¼ M�1p
_p ¼ FðtÞ � CM�1p� Kq

(
or _z ¼ f ðt; zÞ ð2Þ

where

f ðt; zÞ ¼ 0 M�1

�K �CM�1

" #
zþ 0

FðtÞ

� �

By applying time discretization with a time-step s, the solution
of Eq. (2) in the time interval ½tk; tkþ1� can be approximated by the
following second order polynomial

zðtÞ ¼ ðt � tk � g1sÞðt � tk � g2sÞ
g1g2s2

zðtkÞ

þ ðt � tkÞðt � tk � g2sÞ
g1ðg1 � g2Þs2

zðtk þ g1sÞ

þ ðt � t0Þðt � tk � g1sÞ
g2ðg2 � g1Þs2

zðtk þ g2sÞ ð3Þ

where tk ¼ ks and tkþ1 ¼ ðkþ 1Þs are two consecutive time instants,
and tk þ g1s; tk þ g2s are two chosen collocation points in the inter-
val ½tk; tkþ1�. The derivative of Eq. (3) with respect to time can be
written as

_zðtÞ ¼ 2t � 2tk � sðg1 þ g2Þ
s2g1g2

zðtkÞ þ 2t � 2tk � sg2

s2g1ðg1 � g2Þ
zðtk þ g1sÞ

þ �2t þ 2tk þ sg1

s2ðg1 � g2Þg2
zðtk þ g2sÞ ð4Þ

The four unknowns qðtk þ g1sÞ, qðtk þ g2sÞ, pðtk þ g1sÞ,
pðtk þ g2sÞ can be solved by substituting Eqs. (3) and (4) into
Eq. (2) and letting the residual be zero at the two collocation
points. During this process, an algebraic equation system with 4n
unknowns needs to be solved.

According to Ref. [18], the numerical solution approximated by
Eq. (3) obtains at least second-order accuracy. However, if the

collocation parameters g1;g2 are given by the solutions of the fol-
lowing Eq. (5), the accuracy of the resultant algorithms can be
improved to be third order or fourth order.

3ðlþ 1Þg2 � 2ðlþ 2Þgþ 1 ¼ 0 ð5Þ
The solutions are

g1;2 ¼ lþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ l2

p
3ð1þ lÞ ð6Þ

If l equal to any value within ½�1;1�, the resultant algorithm is
unconditional stable and has third order accuracy. When l ¼ 1,
g1;2 ¼ 1=2�

ffiffiffi
3

p
=6, the two collocation points are the gauss points

in the interval ½tk; tkþ1�. Then the collocation method becomes the
same as the Gauss-Legendre Symplectic Runge-Kutta (GLSRK)
method [26], which is non-dissipative and has fourth order
accuracy.

3. A composite collocation method

The collocation method with fourth order accuracy (CM4) gives
very accurate numerical results, which is good for long-term pre-
diction of system response and preservation of system invariant
(such as energy and momentum). Moreover, larger time-step can
be used to produce desired accuracy compared with those methods
with lower-order accuracy. However, in structural dynamic analy-
sis, high-frequency responses produced by the spatial discretiza-
tion process usually do not represent the physical oscillation
behavior of the original system and will reduce the computational
accuracy. The CM4 method does not have numerical dissipation to
damp out the fictitious high-frequency mode responses. In order to
circumvent this drawback, a composite collocation method (CCM)
is proposed in this paper, which has high-order accuracy and con-
trollable algorithmic dissipation.

It can be seen from Eqs.(5) and (6)that, when
l ¼ �0:5;g1;2 ¼ 1�

ffiffiffi
3

p
=3, the resultant third order collocation

method (CM3) is A-stable and has numerical dissipation, and the
collocation points used in the interval ½tk; tkþ1� are tk þ s�

ffiffiffi
3

p
s=3.

However, if the step-size s is reduced to 0:5s, the two collocation
points would be tk þ s=2�

ffiffiffi
3

p
s=6, which are exactly same as that

using CM4 with step-size s. Fig. 1 depicts the collocation points
used in the two algorithms. Apparently, the unknowns using
CM4 with step-size s and CM3 with step-size 0:5s are both
zðtk þ s=2�

ffiffiffi
3

p
s=6Þ. The algebraic equations system required to

be solved using both algorithms is exactly same. The only differ-
ence is that CM4 obtains the numerical result of zðtk þ sÞ, while
CM3 obtains that of zðtk þ 0:5sÞ. In other words, CM3 with step-
size 0:5s and CM4 with step-size s can be regarded as two schemes
of the two-point-collocation methods family. Therefore, a high-
order composite method with numerical dissipation can be devel-
oped by using CM4 and CM3 alternately. Assuming CCMc1=c2

denotes that c1 times of CM4 with step-size s and c2 times of
CM3 with step-size 0:5s are used alternately, c1sþ 0:5c2s would
be the new step-size. By adjusting the parameter c1=c2, the amount
of numerical dissipation can be modified. Moreover, on the pre-
mise of same computational cost, the speeds advancing over inte-
gration time for different methods would be different. Table 1
shows that, with same computational steps, the advancing speeds

over time for CCM2=1, CCM1=2 are obviously faster than that for CM3
with step-size 0:5s.

4. Solution of the algebraic equations system

For high-order time integration algorithms, computational effi-
ciency is crucial to make them truly applicable. Compared with
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