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a b s t r a c t

This paper presents a novel methodology for the identification and quantification of spatial uncertainty,
modelled as an interval field. In order to make a realistic assessment of the spatial uncertainty on the
model parameters, the dimensionality of the interval field as well as its constituting base functions
and interval scalars have to be identified. For this purpose, this work introduces an identification method
based on objective measurement data. The specific challenge in this context lies in the fact that a contin-
uous spatial input parameter has to be identified on a high-resolution discretised model of the structure
under consideration, based on possibly high-dimensional measurement data set, obtained in the result
domain of the analysed model. In the presented method, the field dimensionality is quantified based
on the concept of effective dimension of the measurement data. The base functions of the interval field
are identified by minimising the difference between the gradients of the halfspaces respectively bound-
ing the measurement data and the realisations of the interval field. The method is illustrated using two
case studies: an dynamic model of a cantilever beam and a quasi-static model of a cast pressure vessel. It
is shown that the presented methods are capable of accurately identifying the interval field uncertainty
that is present on the model parameters, and that this identification is robust against the size of the mea-
surement data set.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Continuing advances in computing power and the upswing of
high performance computing (HPC) possibilities allow for making
highly detailed numerical models to approximate the partial differ-
ential equations that govern most physical processes. This in its
turn enables informed design choices based on numerical datasets,
even in very early stages in a product development cycle. However,
such a deterministic analysis may not be sufficient to assess the
quality of a design, as depending on the design stage, some physi-
cal properties of the model are unknown or not yet determined.
Moreover, even in a final design stage production tolerances,
uncertainty about the loading situation and natural variability in
material properties often introduce significant non-determinism
in the functional behaviour of the design. Recent approaches in
the field of computational engineering therefore aim to incorporate
model non-determinism into numerical design models in either a
parametric [1] or non-parametric way [2]. As such, a realistic
assessment of the reliability of the design, including the different
sources of non-determinism is obtained. Moreover, robustness of

the design with respect to these variations can also be ensured.
In this context, two supplementary philosophies exist: probabilis-
tic and possibilistic numerical analysis. Both techniques have their
own field of applicability, depending on the amount of information
is available to the designer [3].

As a complement to this well-established framework of proba-
bilistic uncertainty representation, possibilistic techniques such as
Interval FE (IFE) or Fuzzy FE (FFE) were introduced. Following these
techniques, the non-determinism is respectively depicted as an
interval or fuzzy set and thus propagated through the numerical
model. These concepts eliminate the need for the identification
of a full probabilistic data description, which may be very cumber-
some. Moreover, less expensive numerical procedures are neces-
sary for the description of the non-determinism [4–7], which
makes these techniques highly suitable for early design stages.
Interval fields were only recently introduced as an extension to this
concept to account for non-deterministic parameters that have a
non-homogeneous distribution over the model domain. Interval
Fields can be regarded as a possibilistic counterpart to the estab-
lished framework of Random Fields [8–11] (see e.g., [8] for a
description on Random Fields). The description of an interval field
is based on the superposition of nb base functions wi, scaled by
independent interval scalars aI

i . The base functions wi describe
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the spatial nature of the non-deterministic value that is modelled
by the interval field over the model domain, and are unit-less.
The interval scalars aI

i on the other hand quantify the non-
determinism of the model parameters under consideration. An
interval field is formally expressed as:

cIFðrÞ ¼
Xnb
i¼1

wiðrÞaI
i ð1Þ

Application of these powerful interval techniques for obtaining
a robust and reliable design requires the identification of their
driving parameters. In the context of quantifying scalar interval
uncertainty, to date most presented methods employ a squared
L2-norm based objective function that is aimed at minimising
the discrepancy of the separate interval boundaries of respectively
a measurement data set and the prediction of the interval FE model
(see e.g. [12–15]). An alternative method was introduced by Kho-
daparast et al. who used a Kriging predictor for the inverse propa-
gation of deterministic measurement points in order to estimate
the hypercubic interval uncertainty on the input parameters of
the model under consideration [16]. The authors recently proposed
a generic methodology for the identification and quantification of
multivariate interval uncertainty in [17,18]. The methodology is
build on the concept of using convex polytopes to bound the
non-determinism in both the set of repeated measurement data
and the result of propagating the non-deterministic parameters
through the numerical model under consideration. Minimisation
of the discrepancy between both convex polytopes provides the
interval non-determinism in the model parameters corresponding
to an optimal model description of the non-determinism that was
present in the measurement data. This methodology was validated
using simulated measurement data and was proven to yield highly
accurate results at limited computational cost.

However the good performance of these novel techniques, they
are all limited to interval uncertainty that is considered to be con-
tinuous over the model domain, which in a number of cases is a
serious underestimation of the spatial complexity of the non-
determinism. Therefore, it as yet remains unclear how parametric
non-homogeneous interval non-determinism, modelled as a con-
tinuous interval field, can efficiently be identified based on exper-
imentally obtained datasets of system responses. Specifically, the
base functions wi and field dimensionality nb, as defined in Eq.
(1) should be quantified in order to make an accurate and truthful
estimation of the spatial complexity of the interval field non-
determinism under consideration. An initial estimation of the base
functions and field dimensionality can be based on expert knowl-
edge. This expert knowledge might stem from previous experi-
ments, knowledge of the manufacturing process, or just operator
experience. In most realistic industrial design cases however, this
expert knowledge is scarce, ambiguous or too subjective for use
in the context of designing reliable end-use components. In order
to obtain an objective quantification of the uncertainty that is pre-
sent in the design model, this initial estimate has to be improved
and/or validated based on experimentally obtained measurement
data. However, how this should be done in an interval context as
yet remains unclear. The main challenge in this context is that
the continuous interval field has to be defined over a discretised
domain, possibly having a high spatial resolution. Moreover, in a
realistic FE model, a large number of responses can be considered,
which have to be compared to measurement data. This paper
therefore introduces a method for identifying spatial uncertainty,
modelled as an interval field, based on a large set of measurement
data. In this context, both the dimensionality of the problem at the
input and output side of the numerical model under consideration
is reduced. A generic procedure is introduced for the identification

and quantification of both the field dimensionality nb and the base
functions wi. Moreover, in order to limit the computational burden
of the identification using high-dimensional datasets, the dimen-
sionality of both the measurement data set, as well as the uncer-
tain set containing the responses of the interval field FE model,
are reduced based on a singular value decomposition of the covari-
ance structure of the measurement data set. The methodology is
illustrated on two case studies using numerically generated mea-
surement data. It is shown that an accurate identification of the
complete interval field is obtained following the proposed
procedure.

Section 2 introduces the interval field finite element method in
general. The identification of the interval scalars, as proposed by
the authors in [17,18], is explained in Section 3. The novel
methodology for the identification of the spatial topology of the
interval field, as well as the reduction scheme, are introduced in
Section 4. Sections 5 and 6 illustrate the methodology in two case
studies. Finally, the most important conclusions are given in
Section 7.

2. The interval field finite element method

This section provides a summary of the interval field finite ele-
ment method for the estimation of the uncertainty in the responses
of a numerical model containing interval field uncertainty on its
model parameters. The method is presented in a generic sense,
and the most important definitions are listed. By definition, an
interval parameter x is indicated using apex I: xI . Vectors are
expressed as lower-case boldface characters x, whereas matrices
are expressed as upper-case boldface characters X. For the remain-
der of the text, interval parameters are either represented using

the bounds of the interval xI ¼ ½x; x� or the centre point lxI ¼ xþx
2

and interval radius DxI ¼ x�x
2 .

2.1. Interval field computations

Consider a numerical model MðcÞ, parametrised by parameter
vector c 2 Rk, which includes e.g. material stiffness or plate thick-
ness values. This model MðcÞ translates c to a vector of responses
y 2 Rd (e.g. resonance frequencies or stresses) through the function
operator g, which is defined as:

MðcÞ : y ¼ gðcÞ; g : Rk # Rd ð2Þ
Usually, g is the finite element model that is used to approxi-

mate the solution of the system of partial differential equations
that are used to model the design model behaviour. In the specific
case when dynamic design problems are considered, y usually con-
sists of the eigenfrequencies and eigenmodes of the system at
hand. The interval field FE method can then be expressed as finding
the uncertain set of system responses (i.e. the solution set) ~y, when
the model parameter uncertainty is depicted as an interval field
cIFðrÞ 2 IRk over the geometrical model domain X, with IRk the k-
dimensional space of interval scalars and r 2 X � Rt . t is the phys-
ical dimensionality of the problem at hand (e.g. t ¼ 4 for a time
dependent simulation in three physical dimensions). The solution
set ~y usually spans a multidimensional manifold in Rd. This mani-
fold is in general not convex, which makes an exact computation
numerically very hard. ~y is therefore commonly approximated by
the construction of an uncertain realisation set ~ys, which is defined
as:

~ys ¼ ysjjysj ¼ gðcF;jðrÞÞ; cF;jðrÞ 2 cIFðrÞ
n o

ð3Þ
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