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a b s t r a c t

This work presents a topology optimization approach for lattice structures subjected to thermal and
mechanical loads. The focus of this work is the design of injection molds. The proposed approach seeks
to minimize the injection mold mass while satisfying constraints on mechanical and thermal perfor-
mance. The optimal injection molds are characterized by a quasi-periodic distribution of lattice unit cells
of variable relative density. The resulting lattice structures are suitable for additive manufacturing. The
proposed structural optimization approach uses thermal and mechanical finite element analyses at
two length scales: mesoscale and macroscale. At the mesoscale, lattice unit cells are utilized to obtain
homogenized thermal and mechanical properties as a function of the lattice relative density. At the
macroscale, the lattice unit cells are optimally distributed using the homogenized properties. The pro-
posed design approach is demonstrated through 2D and 3D examples including the optimal design of
an injection mold. The optimized injection mold is prototyped using additive manufacturing. The numer-
ical model of the optimized mold shows that, with respect to a traditional solid mold design, a mass
reduction of over 30% can be achieved with a small increase in nodal displacement (under 5 microns)
and no difference in nodal temperature.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

During the injection molding cycle, injection molds are required
to withstand pressure loads and thermal expansions while provid-
ing dimensional accuracy to the molded part. Molds are also
required to uniformly transfer heat flux from the mold cavity,
where the part is molded, to cooling channels filled with running
coolant. While design guidelines are known to improve the ther-
mal and mechanical performance of injection molds [1], the devel-
opment of structural optimization methods such as topology
optimization offers the potential to create novel and complex
injection mold designs with higher performance [2].

With reference to heat conduction, topology optimization has
been employed to minimize the temperature gradient magnitude
distribution (heat dissipation) for thermal components including
heat sinks for multichip modules [3] and thermal-fluid electronic
microchannels [4]. Studies that consider coupled linear elasticity,
heat conduction and the resulting thermoelastic load in topology
optimization have been recently proposed for two-dimensional
structures [5]. Thermal expansion has been considered in the
topology optimization of micro-electro-mechanical-systems

(MEMS) [6] and electronic packages [7]. Regardless of the numer-
ical model, the result of the application of a traditional topology
optimization algorithm is a solid-void structure in which interme-
diate densities are penalized. As an alternative to the solid-void
structure, this work proposes the design of optimal injection molds
with a lattice (porous) structure. The lattice structure uses inter-
mediate densities, which relaxes the optimization problem,
expands the design space, and, potentially, increases the perfor-
mance of the final design [8]. In addition, a lattice injection mold
opens possibilities for airflow assisted cooling and more complex
heat exchanging design.

An optimal design of a lattice structure can be achieved through
multiscale topology optimization. The multiscale topology opti-
mization problem consists on finding the optimal lattice unit cell
(LUC) designs (mesoscale structural optimization) as well as their
optimal distribution in the structure (macroscale structural opti-
mization). This method requires the application of asymptotic
homogenization theory in order to derive the macroscale mechan-
ical properties of the LUCs. The method has been effectively
applied to 2D and 3D structures subjected to pure mechanical
loads [9–12]. Despite of their potential, multiscale topology opti-
mization has two main drawbacks. First, it requires the execution
of several optimization problems in parallel for each iteration,
which makes it computationally expensive, especially for 3D
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designs. Second, the solutions do not necessarily converge to a
manufacturable, connected design and time-consuming post-
processing may be needed. To alleviate the computational cost
and to improve the connectivity of the LUCs, concurrent topology
optimization strategies have been proposed [13–16]. These strate-
gies lead to the design of an optimal macroscale structure com-
posed of a periodic (uniformly distributed) LUC. Despite of their
manufacturability, the LUC periodicity produces a suboptimal
structure when compared to a non-periodic design.

An alternative approach is the use of multiphase topology opti-
mization [17,18]. This approach uses pre-defined LUCs with
homogenized mechanical properties avoiding the mesoscale struc-
tural optimization. The geometry of the LUCs is controlled by a few
geometric parameters that define their relative density or porosity.
Material interpolation schemes are defined to map the LUC relative
density to their homogenized mechanical properties. The (macro-
scale) structural optimization problem consists on finding the opti-
mal relative density distribution, which ultimately provides the
optimal LUC distribution within the structure. Multiphase topology
optimization has been applied to two-dimensional structures sub-
jected to pure mechanical load [17,18]. The application of this
approach to heat-transferring structures has been less reported
in literature.

This work extends the use of multiphase topology optimization
to three-dimensional structures composed quasi-periodic LUCs
considering thermal and mechanical performance. Integral to the
proposed multiphase topology optimization method for lattice
injection molds is the use of a thermomechanical finite element
model. In this model, the mechanical and thermal load analyses
are coupled to predict the structure’s thermoelastic response.
Asymptotic homogenization theory is used to predict the isotropic
thermal conductivity and the orthotropic linear elasticity of the
LUCs.

The results are demonstrated with the topology optimization of
lattice structures with minimum mass under elastic mechanical
and thermal constraints, which include maximum nodal displace-
ment and maximum nodal temperature on the mold cavity.

The remaining of the paper is organized as follows: The pro-
posed design approach is presented in Section 2. The homogeniza-
tion theory is explained in Section 3 and the macroscale structural
optimization approach is explained in Section 4. Two numerical
problems are presented to demonstrate the design approach in
Section 5: (1) a 2D structure with thermal and mechanical loads,
(2) a core of a 3D injection mold design. Finally, summary and con-
clusion are provided in Section 6.

2. Proposed multiphase topology optimization approach

The proposed optimization approach involves finite element
models in two length-scales: mesoscale and macroscale. The
mesoscale finite element models correspond to the lattice unit
cells (LUCs). These models are used to predict the homogenized
LUC properties. As a result, homogenized elastic and thermal coef-
ficients are expressed as functions of the LUC relative density. The
macroscale finite element model corresponds to the injection
mold. This model contains mechanical and thermal boundary con-
ditions, which include external mechanical loads and supports as
well as the heat sources (mold cavity) and sinks (cooling channels).
The macroscale design problem addressed in this work is to find
the optimal distribution of given number of LUCs that minimizes
the injection mold mass while satisfying mechanical and thermal
constraints. These constraints include mechanical and thermal
compliance as well as maximum nodal displacement and maxi-
mum nodal temperature.

The macroscale design problem is solved in two steps: First, a
relaxed convex problem is addressed so that the mass is minimized
subject to constraints on mechanical compliance and a thermal
compliance [19]. The result is a global optimum of a convex prob-
lem to be used as the initial design of a non-convex problem. Sec-
ond, using this initial design, a structural optimization algorithm
finds the optimal distribution of a discrete number of LUCs so that
the maximum displacement and temperature are minimized in
specific locations of the injection mold, e.g., mold cavity. The opti-
mization approach is summarized in Fig. 1.

3. Mesoscale analysis and homogenization of elastic and
thermal properties of lattice unit cells

This section summarizes the numerical approaches used to
derive the homogenized elasticity tensor DH

c and the homogenized
thermal conductivity tensor jH

c of an a priori defined LUC. The the-
ory presented in this section follows the principles of asymptotic
homogenization [20–23].

3.1. Asymptotic homogenization of the elastic properties

Let a macroscale design domain X to be comprised of nc LUCs,
where c ¼ 1; . . . ;nc . Each of LUC is further discretized into ne finite
elements as illustrated in Fig. 2.

According to the homogenization theory for media with a peri-
odic structure, the homogenized elasticity tensor DH

c of a dis-
cretized periodic LUC is given by

DH
c ¼ 1

jVcj
Xne
e¼1

Z
Ve

½I� Beve�|De½I� Beve�dVe; ð1Þ

where ne are the number of finite elements of the discretized LUC,
jVcjis the LUC volume, I is the identity matrix, Ve is the volume of
the finite element e;Be is the element strain-displacement matrix,
De is the element elasticity tensor, and ve is the matrix containing
the element displacement vectors vij

e resulting from globally enforc-
ing the unit test strains eij (Fig. 3). For a 3D solid finite element, this
is

ve ¼ ½v11
e ;v22

e ;v33
e ;v12

e ;v23
e ;v13

e �; ð2Þ
where vij

e are vectors of size 24� 1. The element displacement vec-
tors vij

e are obtained from the global displacement vector of the LUC
vij
c , which is the solution of the equilibrium equation

Xne
e¼1

Z
Ve

B|
eDeBedVe

" #
vij
c ¼

Xne
e¼1

Z
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B|
eDeeijdVe: ð3Þ

The first term in the left hand side of Eq. (3) is the stiffness matrix of
the LUC and the right hand side is the nodal force vector of the LUC.

Fig. 1. Flowchart of proposed design approach.
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