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a b s t r a c t

The present paper presents a refined one-dimensional finite element model with node-dependent kine-
matics. When this model is adopted, the beam theory can be different at each node of the same element.
For instance, in the case of a 2-node beam element the Euler-Bernoulli theory could be used for node 1
and the Timoshenko beam theory could be used for node 2. Classical and higher-order refined models
have been established with the Carrera Unified Formulation. Such a capability would allow the kinematic
assumptions to be continuously varied along the beam axis, that is, no ad hoc mixing techniques such as
the Arlequin method would be required. Different combinations of structural models have been proposed
to account for different kinematic approximations of beams, and, beam models based on the Taylor and
the Lagrange expansions have in particular been used. The numerical model has been assessed, and a
number of applications to thin-walled structures have been proposed. The results have been compared
with those obtained from uniform kinematic models and convergence analyses have been performed.
The results show the efficiency of the proposed model. The high accuracy of refined one-dimensional
models has been preserved while the computational costs have been reduced by using refined models
only in those zones of the beam that require them.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Improvements in the performances of next-generation struc-
tures will require the use of new computational tools that are able
to deal with multi-field problems and to provide increasingly accu-
rate results. Classical one-dimensional structural models are used
widely in the design of complex structures but they are limited
by their fundamental assumptions. When the Euler-Bernoulli
[27] beam model is used, it is accepted that the solution can only
be considered accurate for slender bodies and isotropic materials.
If moderately stubby structures are considered the model proposed
by Timoshenko [42] has to be used to include shear effects, and in
this case, the use of a shear correction factor, see Timoshenko [42],
Cowper [22], Dong et al. [26], is required to overcome the approx-
imation of a constant shear distribution over the cross-section. The
de Saint-Venant principle [25] states that two statically equivalent
loads produce equivalent stress and strain fields if they are evalu-
ated at a sufficiently large distance from the loads. In other words,
even though the fundamental assumption of classical models are
satisfied, the loads and boundary condition may afflict the solution

at a local level. Some examples can be seen in the works by Horgan
and Simmonds [31], Tullini [43] and Lin et al. [32] regarding end-
effects or by Bar-Yoseph and Avrashi [3] and by Bar-Yoseph and
Ben-David [4] concerning the free edge singularity. Advanced mod-
els are therefore required to obtain reliable results in that portion
of the structure.

The introduction of refined structural models allows the limita-
tions introduced by the fundamental assumptions of the classical
models to be overcome and the stress singularities due to local
effects to be dealt with. Many refined one-dimensional models
have been proposed over the last few decades, e.g. the use of warp-
ing functions, as proposed by Vlasov [44], allows the cross-section
deformation to be included in the beam models. Cross-sectional
warping plays an essential role in thin-walled structures as shown
in the work by Friberg [29] and Ambrosini [1], where the warping
function approach was used. Schardt [38] proposed a one-
dimensional model for the thin-walled structures analysis where
the displacement field was considered as an expansion around
the mid-plane of the thin-walled cross-section. This approach,
which is called the generalized beam theory (GBT), was used by
Davies and Leach [23] and Davies et al. [24], and an extension to
the analysis of composite material was proposed by Silvestre and
Camotim [40]. The Variation Asymptotic Method, VAM, proposed
by Berdichevsky [7], uses a characteristic cross-section parameter
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to build an asymptotic expansion of the solution. The application of
this approach to one-dimensional structures can be seen in the
work by Giavotto et al. [30]. Volovoi [45], Yu et al. [51] and Yu
and Hodges [50] have extended this method to composite materi-
als and beams with arbitrary cross-sections. Živković et al. [52]
proposed a general beam formulation including the cross-
sectional deformation. A similar approach has been used by Yoon
et al. [49] and Yoon and Lee [48] that proposed the introduction
of a cross-sectional refined kinematic able to deal with in- and
out-of-plane warping.

Different computational models have been developed on the
basis of the above mentioned structural theories. A numerical tool
that is frequently used in structural analysis is the Finite Element
Model, FEM, which allows the structural theory to be easily
included in the computational code. FEM models usually include
classical structural theory, Timoshenko in the beam case, but also
try to include refined approaches. This is the case of the so called
elements BEAM188 and BEAM189 that exploit a cross-sectional
model to define ad hoc warping functions for each geometry, has
proposed by Schulz and Filippou [39]. A unified formulation that
is able to provide any order structural model has been proposed
by Carrera [10]. This approach, called the Carrera Unified Formula-
tion, CUF, has been used to derive both 1D [14] and 2D [11] theo-
ries. When one-dimensional models are considered, the CUF allows
the cross-sectional displacement field to be described using a func-
tion expansion, and the accuracy of the results can be increased by
just increasing the expansion order [18]. In most cases, refined
models are required to describe local effects when high stress gra-
dients are present. In other cases, the classical model assumptions
are not satisfied in some regions of the structure. The use of a
refined beam model over the whole domain therefore requires
more computational costs than those necessary. The best solution
would be to use refinedmodels only in the region in which they are
required and classical models elsewhere. The problem of mixing or
joining different structural models is a well-known topic in litera-
ture. An exhaustive review of the state of the art can be found in
the work by Wenzel [47]. When models with incompatible kine-
matics have to be joined, compatibility of the displacement should
be imposed between the two domains. One of the possible
approaches is to impose the compatibility condition at the bound-
ary between the two models. Compatibility can be imposed using
Lagrange multipliers, as shown in the work by Prager [34]; the
same approach has been used in the frameworks of the CUF by Car-
rera et al. [15]. An extension of this approach was proposed by Ran-
som [36] in which a spline was used to couple two incompatible
meshes. This approach is called three-field. An alternative
approach, which includes Lagrange multipliers in the principle of
virtual work, was introduced by Blanco et al. [9]. A second
approach that can be used to join incompatible structural models
involves creating an overlapping zone of the two domains. In this
case, there is a smooth transition between the two kinematics.
An example of this approach is the Arlequin method, proposed
by Ben Dhia and Rateau [6], Ben Dhia [5]. In this case, compatibility
in the shared area is imposed by using Lagrange multipliers. This
approach has also been used in CUF frameworks, for example, in
the work by Biscani et al. [8]. Finally, many approaches have been
proposed that use a coarse mesh over the whole structure and only
overlap a refined mesh in the area where complex phenomena are
expected. Some examples are the s-FEM method proposed by Fish
[28] and the model proposed by Park et al. [33]. The s-FEMmethod
has been coupled with other refinement techniques, see Reddy and
Robbins [37], such as the p- and h- refinements, where the element
order and the element size are refined locally. These refinement
approaches were presented by Babuska and Chandra [2], Szabo
and Babuska [41] and Rachowicz et al. [35]. Except for the cases
mentioned above, the use of refined models based on the CUF

has been limited to constant kinematic models, that is, the kine-
matic assumptions were considered uniform over the whole struc-
tural domain. The benefits, in terms of accuracy and computational
cost, that came from the use of refined one-dimensional models,
with respect to classical approaches, have been pointed out in
many published works [16,17] and will not be discussed here in
detail. The present work has the aim to improve the efficiency of
the well-know refined one-dimensional models introducing a
node-dependent kinematic formulation able to adopt advanced
kinematics only where required. This approach, in contrast with
classical FE models, allows the accuracy to be improved using a
refinement in the kinematic assumptions without any mesh refine-
ment of the FEM model. This approach, in fact, allows different
kinematics to be assumed at each node of a one-dimensional beam
element. This permits: the accuracy of the model to be increased
only in the part of the structure where this is required, a transition
element to be created that is able to connect elements with differ-
ent kinematics, classical beam models to be connected with shell
and solid elements without any displacement discontinuities, as
shown by Carrera and Zappino [20] that connect refined one-,
two- and three-dimensional models, and global-to-local analysis
to be performed with only one model. No ad hoc formulations have
been introduced to achieve these results, the transition between
different kinematics is in fact guaranteed by the shape functions
used in the FE model. The use of the Carrera Unified Formulation,
presented in [12], and the properties of the FEM allow the model
to be derived in a compact form, which is called fundamental
nucleus. This approach was presented in part by Carrera and Zap-
pino [19], some preliminary results were shown in that work.
The present paper extends the approach to different beam models,
and provides an exhaustive and general theoretical formulation.
Classical models and equivalent single layer models, see [14],
based on a Taylor expansion, have been used where a low accuracy
was required. Layer-wise models, see [21], have instead been used
where a refined result was required. The theoretical model is pre-
sented in the first part of the paper. Several results have been pro-
posed to assess the model. Finally an application to the thin-walled
structures has been introduced. The results show the advantages
introduced by the present model, in terms of computational cost
and accuracy.

2. Node-dependent kinematic beam elements

The one-dimensional finite element introduced in the following
sections allows different kinematics to be used at each beam node.
If a 2-node element is considered, see Fig. 1, the kinematic assump-
tions used at node 1 can be different from those used at node 2. The
capabilities of this element allow refined beam models to be used
only at the beam nodes that require refined kinematics. Such fea-
tures make the present element suitable for many applications:
global to local analysis, transition elements, connection between
different FEMmodels (1D to 2D or 2D to 3D). The use of a finite ele-
ment formulation makes it possible to have a continuous transition
of the kinematic assumption within the element without the need
of any ad hoc formulation. The reference system shown in Fig. 2 is
considered. The coordinate y stays on the axis of the beam while x
and z lay on the cross-section X. The displacement vector can be
written as:

Fig. 1. A two-nodes beam element with a node-dependent kinematic.
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