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a b s t r a c t

In this paper, a generalization of the quadratic manifold approach for the reduction of geometrically non-
linear structural dynamics problems is presented. This generalization is obtained by a linearization of the
static force with respect to the generalized coordinates, resulting in a shift of the quadratic behavior from
the force to the manifold. In this framework, static derivatives emerge as natural extensions to the modal
derivatives for displacement fields other than the vibration modes, such as the Krylov subspace vectors.
In the nonlinear projection framework employed here, the dynamic problem is projected onto the tan-
gent space of the quadratic manifold, allowing for a much lower number of generalized coordinates com-
pared to linear basis methods. The potential of the quadratic manifold approach is investigated in a
numerical study, where several variations of the approach are compared on different examples, giving
a clear indication of where the proposed approach is applicable.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the advent of the digital era and ever so powerful comput-
ers, elaborate simulation techniques have conquered the design
processes in engineering. While the computational power has
increased dramatically in the past decades, the demand for more
detailed and accurate models still drives the development for even
more efficient and powerful simulation techniques.

In order to reduce the computational cost while preserving the
accuracy of large scale models, Model Order Reduction (MOR) has
found its way in the realm of nonlinear structural dynamics.
Within the context of the finite element method used for the spa-
tial discretization of arbitrary geometries, two aspects need to be
tackled together in order to solve the conflicting goals of low com-
putational effort and high accuracy. The first aspect is the reduc-
tion of the number of unknowns in the governing equations
based on subspace projection. These projective MOR techniques
have seen huge success, especially for linear systems, as they allow
for the reduction in the number of unknowns over several orders of
magnitude while retaining accuracy. The second aspect deals with
the complexity reduction in the computation of certain nonlinear
terms in the governing equations, which need to be updated for

every evaluation in both static and dynamic problems. In this
aspect, usually referred to as hyper-reduction, huge strides have
been made recently in the context of finite elements [3,14].

In this paper, the first aspect, i.e. the reduction in the number of
degrees of freedom (dofs) in the governing equations, is addressed.
The key question of all of such projection-based techniques
concerns the subspace onto which the system of equations is
projected. For linear systems, various systems-theory concepts
exist, such as modal decomposition, observability and controllability,
transfer function or linear superposition. Many reduction tech-
niques rely on these properties to build a suitable reduction basis,
e.g. Modal Truncation, Balanced Truncation, Krylov Subspace
Methods with Moment Matching or other physically-intuitive
reduction techniques like the Craig-Bampton Method. An overview
of the mentioned methods with application to linear structural
dynamics is given in [19]. For nonlinear systems, however, these
concepts either do not exist, or are not computationally feasible.
For this reason, most nonlinear reduction techniques are not based
on intrinsic physical properties upon which the linear methods
rely, but rather are data driven, where an existing solution is ana-
lyzed in order to generate a subspace in which the solution is
approximated. Despite the accuracy, all these techniques, mostly
being a variant of the Proper Orthogonal Decomposition (POD),
carry the drawback of the requirement of a full simulation in
advance. This seems to be against the goals of MOR, especially in
cases where the available computational resources do not allow
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a full simulation. The need for MOR in simulation free scenarios has
also been a motivation for this work.

In order to build a projection subspace for nonlinear structural
dynamics independent of full a priori simulations, some attempts
have been made in the past. The key strategy is the application
of an established reduction scheme on the linearized model
followed by the extension of the reduction basis to capture the
nonlinearity. A popular example is the use of Modal Derivatives
(MDs), which are computed by means of perturbation of vibration
modes (VMs) [6,1,20,7]. Furthermore, the extension of the VMs to
nonlinear systems with the so called nonlinear normal modes has
also been used for MOR [15], or even for demonstrating the reduction
quality of the MDs [8,12].

As the computation of MDs is expensive and involves the solu-
tion of a singular system, usually a simplified static version of the
MDs is also used (cf. companion paper [7] for a discussion). As
MDs or their simplified counterparts have proved to be efficient
tools for MOR [6,1,17], their concept has also been extended to
other types of linear modes [5], however lacking a sound theory.
A further issue in augmenting a linear basis using MDs is the quad-
ratic growth of the basis size with respect to the number of linear
modes used initially. To tackle this issue and keep the reduction
basis small, selection strategies for a specific augmentation were
proposed in [13] and in the companion paper [7].

In this paper, the concept of these simplified MDs is equipped
with a sound theory by the use of a Quadratic Manifold (QM).
The key idea lies in the mapping, not into a linear subspace
(which can be interpreted as an uncurved manifold), but into a
Quadratic (nonlinear) Manifold. The projection subspace is then
the configuration-dependent tangent space of the manifold. As
already discussed in the companion paper [7], the QM takes care
of the quadratic growth issue of the linear basis size when the
MDs are used as independent components.

This paper complements the companion paper [7], where the
concept of QM is proposed and tested on shell structures. Here,
the theory of the Static MDs is extended to displacement fields
other than the VMs with a sound physical foundation. These are
then called Static Derivatives (SDs). Furthermore, the proposed
generalization is tested on a broader class of applications, namely
2D and 3D continuum finite element based structures.

The paper is organized as follows. In the next section, after an
introduction to linear projection for MOR, the concept of nonlinear
projective MOR is presented using the QM approach as an example.
Then, two strategies for the computation of the necessary ingredi-
ents for the QM are discussed, namely the approach using MDs and
the Force Compensation Approach using SDs. Thereafter, the use of
SDs in the framework of a linear basis is discussed. Subsequently
in Section 3, the proposed methods are applied to four examples
with a focus on the accuracy of the given methods. Conclusions
are given in the last section.

2. Model order reduction using quadratic manifold

2.1. Linear projective model order reduction

The semi-discretized equations of motion of a (geometrically)
nonlinear structure are given as

M€uþ C _uþ f ðuÞ ¼ g; ð1Þ

where u 2 RN is the vector containing the physical displacement
dofs, M 2 RN�N is the mass matrix, C 2 RN�N the damping matrix,
f ðuÞ 2 RN is the nonlinear internal force vector and g 2 RN is the
external forcing. The time dependence of u and g is omitted for
brevity. The basic idea of linear projective MOR for second
order systems such as in (1) is the linear transformation of the

displacement vector u to a reduced set of generalized coordinates
q 2 Rn, where n � N, such that

u ¼ Vq; _u ¼ V _q; €u ¼ V€q; ð2Þ

where V 2 RN�n is the projection matrix. The columns of V span the
subspace in which the high dimensional displacement vector u is
constrained and the entries of q represent the time varying ampli-
tudes of the column vectors in V .

If (2) and its derivatives are substituted in (1), a residual r is
expected as the system of equations are not satisfied in general.
More specifically,

MV€qþ CV _qþ f ðVqÞ ¼ g þ r: ð3Þ

According to the principle of virtual work, the residual force r must
be orthogonal to the kinematically admissible motion du ¼ Vdq. In
order to solve the under-determined system (3), the Galerkin pro-
jection can be used, which implies VTr ¼ 0. This results in the
reduced system of equations

VTMV€qþ VTCV _qþ VT f ðVqÞ ¼ VTg; ð4Þ

or, equivalently,

Mr€qþ Cr _qþ f rðqÞ ¼ VTg; ð5Þ

where Mr ¼ VTMV and Cr ¼ VTCV are the reduced linear compo-
nents which can be precomputed offline, and f rðqÞ ¼ VT f ðVqÞ is
the reduced nonlinear force. Clearly, this resulting system is of
dimension n � N.

2.2. A nonlinear projective model order reduction approach: quadratic
manifold

The key idea in linear projective MOR is the linear mapping
between the full, high dimensional displacement vector u and
the reduced variable q. However, this mapping can be generalized
to a nonlinear mapping CðzÞ : Rn # RN , with z 2 Rn being the vec-
tor of nonlinear reduced generalized coordinates such that

u ¼ CðzÞ; _u ¼ @C
@z

_z; €u ¼ @C
@z

€z þ @2C
@z2

_z _z: ð6Þ

The nonlinear transformation (6) is then substituted into the gov-
erning Eq. (1) and the force residual r is chosen to be orthogonal
to the kinematically admissible displacements du according to the
principle of virtual work. For this transformation, du is then given
by

du ¼ @C
@z

dz ¼ PC dz; ð7Þ

with the tangent projector PCðzÞ ¼ @C
@z spanning the tangent sub-

space of the kinematically admissible displacements du . This
results in the reduced system of equations as

PT
CMPC€z þ PT

CM
@2C
@z2

_z _z þ PT
CCPC _z þ PT

Cf CðqÞð Þ ¼ PT
Cg; ð8Þ

with the reduced mass matrix PT
CMPC 2 Rn�n, the reduced damping

matrix PT
CCPC 2 Rn�n and the reduced nonlinear force

PT
Cf ðCðzÞÞ 2 Rn. Relative to the linear projective reduced system

(4), the extra term PT
CM

@2C
@z2

_z _z can be interpreted as a convective
term due to the change of the basis, which is proportional to the

curvature @2C
@z2 of the nonlinear transformation CðzÞ and to the square

of the generalized velocities _z.
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