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a b s t r a c t

In this work, a computational framework applying-finite element model updating techniques is presented
for identifying the linear and nonlinear parts of large scale dynamic systems using vibration measure-
ments of their components. The measurements are taken to be, response time histories and frequency
response functions of nonlinear and linear components of the system. Covariance Matrix Adaptation –
Evolution Strategy (CMA-ES) a state of the art optimization algorithm was coupled with robust and accu-
rate finite element analysis software in order to effectively produce optimal computational results. The
developed framework is applied to a geometrically complex and lightweight experimental bicycle frame
with nonlinear suspension fork components. The identification of modal characteristics of the frame (lin-
ear part) is based on an experimental investigation of its dynamic response. The modal characteristics are
then used to update the finite element model. The nonlinear suspension components are identified using
the experimentally obtained response spectra for each of the components tested separately. Single objec-
tive structural identificationmethods without the need of substructuringmethods, are used for estimating
the parameters (material properties, shell thickness properties and nonlinear properties) of the finite ele-
mentmodels, based onminimizing the deviations between the experimental and analytical dynamic char-
acteristics. Finally, the numerical results of the complete system assembly were compared to the
experimental results of the equivalent physical structure of the bike.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, current industrial demands, tend to have the need of
improving, modifying and developing new and optimized versions
of various parts of mechanical systems or structures and mechan-
ical assemblies as a whole, in order to evolve and keep up with
growing competition. In most such cases, there is no available
information not only about their geometric and designing details,
but also about their material properties and mechanical treatment
and procedures carried out during the construction process. In
order to address this issue, a reverse engineering strategy is neces-
sary to be applied [1–5]. During this process, many issues are taken
into account, related to the development of the CAD and FE model
of the examined structure, the experimental modal analysis proce-
dures and the application of robust and effective computational
model updating techniques.

Over the recent decade or so, although contemporary finite-
element (FE) procedures for structural analysis have been highly
sophisticated and modernized, practical problems and applica-

tions, reveal notable deviations between analytical and experimen-
tal models. In order to diminish the discrepancies between
analytical predictions and experimental results, maintaining
important practical requirements and the physical meaning of
the results, a model updating process is necessary to be applied.
In model updating, effective computational procedures are applied
in order to finely tune and adjust the parameters of analytical
finite-element models using experimental test data [6]. Response
time histories, frequency response functions or modal parameters
(natural frequencies, mode shapes and modal damping ratios) are
used, to quantify the discrepancy between analytical and experi-
mental models, defining a modal or a response residual. These
residuals are minimized in order to acquire a best match consis-
tency between the analytical quantities and those identified from
the experiments. The type of this inverse problem falls within
the discipline of system identification [7–9] and as usually practiced,
produces analytical models with more accurate dynamic response
predictions to prescribed dynamic loading.

However, the accuracy of the response predictions will be
uncertain, on the one hand, because of the uncertainty of all future
structural excitations and on the other hand, because the structural
model will always involve approximations of the real dynamic
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behavior that affects in an uncertain manner the predicted
responses. In addition, the structural model will usually involve
parameters whose values are naturally uncertain [7]. Uncertainties
related to model-structure errors, arise from the assumptions
made to parameterize and describe the behavior of the physical
structure. Such uncertainties include simplifications and erroneous
assumptions, inexact modeling of the material constitutive behav-
ior, inexact modeling of boundary conditions (e.g. pinned and fixed
joints), errors because of the spatial discretization of the dis-
tributed structural system, unmodeled features, such as neglected
nonstructural components, as well as errors introduced by numer-
ical methods. In this work, such uncertainties are treated meticu-
lously and are minimized to the most plausible extent according
to each problem, as cannot be regarded and tuned by model updat-
ing methodologies. Model updating basically regards, erroneous
assumptions of model parameters such as material parameters
(Young’s modulus and mass density), cross section properties
(moments of inertia), shell or plate thickness, spring stiffnesses
and non-structural mass [6]. For a model updating method to be
useful in practice, it should handle distinct difficulties. The incom-
pleteness of experimental test data needed to produce physically
meaningful models as a small subset of DOFs are observed due to
limited number of sensors and noise contaminated test results,
are known and hardly dealt problems. Furthermore, the lack of
actual structural parameters among the chosen class as the upper
and lower boundaries of updated parameters are limited as well as
modal parameters controlling the dynamic response which are
insensitive to changes in the stiffness and mass distributions are
also problems arising from the introduced methods. Finally, the
selected residuals passed to the optimization methodology that
need to be globally minimized, avoiding encirclement in local min-
ima, without sacrificing speed of convergence is a difficulty to be
carefully overpassed [8].

Structural model parameter estimation based on measured
modal data [10–15] are often formulated as weighted least-
squares estimation problems inwhichmetrics,measuring the resid-
uals betweenmeasured andmodel predictedmodal characteristics,
are build up into a single weighted residual metric formed as a
weighted average of the multiple individual metrics, using weight-
ing factors. Standard gradient-based optimization techniques are
then used to find the optimal values of the structural parameters
thatminimize the singleweighted residuals, representing an overall
measure of fit, betweenmeasured andmodel predictedmodal char-
acteristics. Due to model error and measurement noise, the results
of the optimization are affected by the values assumed for the
weighting factors. Conventional gradient-based optimization algo-
rithms do not guarantee convergence to a global optimum. Alterna-
tively, evolutionary strategies [16–19] are more effective in
avoiding entrapment in local optima, at the disadvantage of slower
convergence rates to the optimum. Evolutionary strategies are
highly parallel, so the time to solution of the optimization problem
inmassively parallel computer architectures, may be comparable to
conventional gradient-based optimizationmethods.Moreover, evo-
lutionary strategies will have a better chance of finding the global
optimum and are model non-intrusive.

Randomized search algorithms are regarded to be robust in a
rugged search landscape, can comprise discontinuities, (sharp)
ridges, or local optima. The covariance matrix adaptation (CMA)
in particular is designed to tackle, additionally, ill-conditioned
and non- separable problems [20]. Among several classes of evolu-
tionary algorithms, the Covariance Matrix Adaptation – Evolution
Strategy (CMA-ES) [18,21–23] has been shown to converge fast
in particular when searching for a single global optimum. CMA-
ES stochastic optimization algorithm, is a general purpose method,
which has not been widely applied to FE updating problems,
involving large and complex models and cases, but has been widely

tested on mathematical functions and numerical lumped FE mod-
els successfully [24]. As CMA-ES is fully parallelizable, in this work
a free distribution of the CMA-ES algorithm is applied in parallel
computing, to solve the single-objective optimization problem,
arising from combining modal and response residuals. Robust
and accurate FE Analysis software is employed, in combination to
the parallelized strategy, in order to produce results of the pro-
posed objective function residual simultaneously and populate
the algorithm’s offsprings. Such a computation is performed, using
the non-intrusive adaptive Parallel Numerical Differentiation
Library (PNDL) [25]. The above optimization algorithm is imple-
mented within P4U framework [18] based on a state-of-the-art
task-parallel library for clusters, called TORC [26], which is
designed to provide unified programming and runtime support
for computing platforms that range from single-core systems to
hybrid multicore-GPU clusters and heterogeneous grid-based
supercomputers.

In this work, the applicability and effectiveness of a reverse
engineering strategy focusing on the updating methodology, cou-
pled with robust, accurate and efficient finite element analysis
software, are applied on linear and non-linear components of a
whole structure assembly, using experimentally identified modal
and response data. The proposed framework is applied on a bicycle
with its nonlinear front suspension component. More specifically,
the examined structure is a lightweight and geometrically complex
bicycle frame as well as its suspension-fork subassembly, compris-
ing the linear and nonlinear subsystems of the whole bike assem-
bly. Furthermore, the suspension-fork subassembly is consisted of
two linear parts (upper and lower fork part) connected with two
linear springs and two seals that impose strong nonlinearity in
the system. Issues related to estimating unidentifiable solutions
[27–30] arising in FE model updating formulations are also
addressed. The effect of model error, finite element model param-
eterization, number of measured modes and number of mode
shape components on the optimal models along with and their
variability, are examined.

The presentation in this work is organized as follows. The the-
oretical formulation of finite element model updating based on
modal characteristics, frequency response functions is briefly pre-
sented in Section 2, summarizing structuring of the objective func-
tion. Section 3 presents the adopted objective function for the
nonlinear systems. Formulation of the CMA-ES stochastic algo-
rithm is described in Section 4. Section 5 introduces the proposed
computational framework, as applied in this work. In Section 6 the
experimental arrangements and applications are introduced. At
first a quick presentation of the digitization of the bicycle compo-
nents leading to the final parametric CAD model is shown with the
corresponding detailed FE models. Next the applied experimental
modal analysis procedure is presented, in order to identify the
modal characteristics and the FRF’s. The parametric studies on
updating the linear and nonlinear FE models of the bicycle compo-
nents, using predictions of frequency response functions, time his-
tories and transmissibility functions, based on the optimal models,
are presented in Sections 7 and 7.3, along with the experimental
arrangement and application both of the non-linear subsets and
the whole structure. Section 9 presents the correlation of the
dynamic response between the finite element and experimental
model. Conclusions are summarized in Section 10.

2. Linear finite element model updating strategies

2.1. Modal residuals

Let D ¼ fx̂r ; /̂r 2 RNo ; r ¼ 1; . . . ;mg be the measured modal data
from a structure, consisting of modal frequencies x̂r and mode
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