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a b s t r a c t

When the compressive loads are dominant in a composite structure, a tensile stress may be induced
owing to the propagation of a stress wave and the interaction between an incident wave and a reflection
wave, thus leading to the occurrence of cracks. Therefore, stress wave have a significant effect on the life
of composite structures. In this study, a four sub-step explicit time integration scheme is proposed for
solving stress wave propagation problems. This method builds on the fourth-order central difference
method and a high-order derivative term to minimize the numerical oscillation. The proposed scheme
possesses a first-order accuracy in the case of undamped and damped systems. Stability, accuracy, and
dispersion of the proposed explicit direct time integration scheme are analyzed. Furthermore, the perfor-
mance of this scheme is illustrated by the solution of a stress wave propagation and wave reflection in a
one-dimensional impact problem and two-dimensional scalar wave propagation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The propagation of stress waves and wave reflection are impor-
tant factors in a composite structure system. If a compressive wave
propagates to a corner enclosed by two free surfaces at a certain
angle, then net tensile stress may occur due to the interaction
between the two reflective waves and thus cause the corner
spalling [1]. The compressive loads are applied to the composite
structure and then transverse cracks caused by the tensile stress
may be initiated. Therefore, in the present study, we start the the-
oretical investigation of the stress wave in order to analysis the
crack of structures under the compressive loads.

Stress wave propagation is investigated considering the inertia
of the infinitesimal element of a structure under explosive or
impact loading. The hyperbolic wave equations are solved by
mathematical analysis. As mathematical analysis is performed
under limiting conditions, numerical methods can be used for
approximate solving of the wave equations. These numerical
methods can be categorized into the following three groups [1]:
characteristics method, finite difference method, and finite ele-
ment method.

The characteristics method is usually applied to solve
one-dimensional stress wave problems. However, in general
multidimensional stress wave problems, as the characteristics

and compatibility equations are fairly complicated, it is difficult
to obtain a solution. The finite difference method has been widely
applied to solve the problems of rectangular or simple shapes,
where it is relatively easy to obtain a solution [2]. The feature of
the finite element method is that it handles complicated geome-
tries and boundary conditions. This has resulted in extensive finite
element research and numerous studies about wave propagation
have been performed using this method [2–9].

There are various general sources of errors in the finite element
solution [2], such as the discretization [3,4,10–12], integration in
space [4–6,13], constitutive relations [14–18], dynamic
equilibrium equations [7,8,19–22], iteration [23–26], and round-
off [27–29]. In the case of dynamic equilibrium equations, approx-
imate finite element solutions are obtained by direct time integra-
tion schemes. Direct time integration is mainly used in stress wave
propagation and dynamic structure problems. It is difficult to find
accurate finite element solutions for stress wave propagation prob-
lems using the direct time integration method. The finite element
solutions are not accurate owing to numerical errors occurring in
temporal and spatial discretization, such as artificial period elonga-
tions, amplitude decays, numerical dispersions, dissipations, and
oscillations [2–8].

In previous research, many direct time integration schemes
were proposed to improve the accuracy of the solution. The time
integral schemes were presented in the central difference method,
Runge-Kutta method, Bathe method [7], Noh-Bathe method [8],
Newmark method [19], Hulbert and Chung [21], and
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Tchamwa-Wielgosz method [22]. The Tchamwa-Wielgosz method
is first-order accurate, and the central difference method, Bathe
method, Noh-Bathe method, and Newmark method are second-
order accurate. However, even when these methods are applied
to solve the problems, the numerical oscillations and errors
remain. In addition, the four sub-step Runge-Kutta scheme with
fourth-order accuracy cause spurious oscillations of the solution
[30].

Owing to numerical oscillations, the finite element solutions
differ from exact solutions. Therefore, it is difficult to obtain accu-
rate solutions and analyze the results by the finite element analysis
of structures. For example, in Ref. [31], the numerical oscillations
in contact pressure were presented using the finite element con-
tact model. Furthermore, in Ref. [32], resulting from dynamic
response and numerical effect, some numerical oscillations in the
impact force appeared. Similarly, de Matos and Nowell [33]
reported some difficulties using stress extrapolation, which was
used to investigate the plasticity-induced fatigue crack closure
according to the corner point singularities and the Poisson’s ratio.
In Ref. [34], the spurious oscillations may result in low accuracy
when estimating a structure life by the Rainflow method. An
important point for the fatigue limit state of structures is to reduce
the errors from numerical oscillations. It is also important to
reduce errors in wave propagation caused by spurious oscillations.

Despite numerous studies using the direct time integration
method, there is no reliable integration method for the accurate
non-oscillatory solution, even for wave propagation problems in
elastic materials, which undermines the reliability of the numerical
results in wave propagation solutions. However, in previous
research, the finite element problems have been solved by using
the filtering processing technique instead of an alternative direct
time integration method. By filtering the specific time and space
points, the errors from numerical oscillations can be reduced
[5,35,36]. However, these approaches do not lend themselves to
analyses requiring a solution for all times and over the complete
solution domain [7].

In the present study, we propose the explicit time integration
scheme to reduce the numerical oscillations in the propagation
of stress waves. The procedure for the new explicit time integra-
tion scheme with first-order accuracy is developed and evaluated
through stability and accuracy analyses, according to standard pro-
cedures described in details in Ref. [2]. Then we investigate the dis-
persion properties in one-dimensional and two-dimensional
analyses. Finally, we provide the calculated response for the elastic
bar wave problems and a two-dimensional wave problem using
the proposed method, Bathe method, and central difference
method.

2. Four sub-step explicit time integration scheme

2.1. Proposed explicit time integration scheme

The governing finite element equations in linear analysis are
provided by Eq. (1):

M€Uþ C _Uþ KU ¼ R ð1Þ
where U, M, C, K, and R are the nodal displacement vector, mass
matrix, damping matrix, stiffness matrix and external nodal force
vector, respectively, and the over-dot means differential with
respect to time. With the displacements, velocities, and accelera-
tions at time t, the solutions at time t þ Dt are calculated by the
direct time integration scheme.

The basic approach of the proposed method is to use the fourth-
order central difference method and a high-order derivative term,
as inspired by the Kawamua-Kuwahara scheme [37]. The

Kawamua-Kuwahara scheme is a numerical scheme that considers
a fourth-order central difference equation and a fourth-order
derivative term. In the proposed method, the time step Dt is
divided into four sub-steps; then, unknown displacements, veloci-
ties, and accelerations are calculated.

In the proposed method, the first sub-step is as follows (see Eqs.
(2)–(4)):

tþDt=4U ¼ tUþ Dt
4

t _Uþ 1
2

Dt
4

� �2
t €U ð2Þ

tþDt=4 _U ¼ t _Uþ Dt
4

t €U ð3Þ

MtþDt=4 €Uþ CtþDt=4 _Uþ KtþDt=4U ¼ tþDt=4R̂ ð4Þ
The second sub-step is as follows (see Eqs. (5)–(7)):

tþDt=2U ¼ tUþ Dt
2

tþDt=4 _Uþ 1
2

Dt
2

� �2
tþDt=4 €U ð5Þ

tþDt=2 _U ¼ t _Uþ Dt
2

tþDt=4 €U ð6Þ

MtþDt=2 €Uþ CtþDt=2 _Uþ KtþDt=2U ¼ tþDt=2R̂ ð7Þ
The third sub-step is as follows (see Eqs. (8)–(10)):

tþ3Dt=4U ¼ tþDt=4Uþ Dt
2

tþDt=2 _Uþ 1
2

Dt
2

� �2
tþDt=2 €U ð8Þ

tþ3Dt=4 _U ¼ tþDt=4 _Uþ Dt
2

tþDt=2 €U ð9Þ

Mtþ3Dt=4 €Uþ Ctþ3Dt=4 _Uþ Ktþ3Dt=4U ¼ tþ3Dt=4R̂ ð10Þ
Finally, the fourth sub-step is as follows (see Eqs. (11)–(13)):

tþDtU ¼ 8tþ3Dt=4U� 8tþDt=4Uþ tU� 3DttþDt=2 _U

þ aðDtÞ4tþDt=2Uð4Þ ð11Þ

tþDt _U ¼ 8tþ3Dt=4 _U� 8tþDt=4 _Uþ t _U� 3DttþDt=2 €U

þ aðDtÞ4tþDt=2Uð5Þ ð12Þ

MtþDt €Uþ CtþDt _Uþ KtþDtU ¼ tþDtR̂ ð13Þ

where UðiÞ is i-order differential and a is a parameter to be deter-
mined. The parameter a affects the stability limit and accuracy of

the solution. tþDt=4R̂, tþDt=2R̂, and tþ3Dt=4R̂ are the load vectors corre-
sponding to each sub-step and are given in Section 2.5. tþDt=2Uð4Þ

and tþDt=2Uð5Þ are calculated using the following equations (see
Eqs. (14) and (15)):

tþDt=2Uð4Þ ¼
tþ3Dt=4 _U� 3tþDt=2 _Uþ 3tþDt=4 _U� t _U

ðDtÞ3=32 ð14Þ

tþDt=2Uð5Þ ¼
tþ3Dt=4 €U� 3tþDt=2 €Uþ 3tþDt=4 €U� t €U

ðDtÞ3=32
ð15Þ

The first sub-step can be seen as the explicit Euler forward method.
The second and third sub-steps are based on the second-order cen-
tral difference method, while the fourth sub-step can be interpreted
as using the fourth-order central difference method and a high-
order derivative term. The fourth-order and fifth-order differentials
are derived from the second-order central difference method and
the Euler backward method.
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