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a b s t r a c t

Dealing with bifurcation points when solving large deformation finite element problems is not an easy
task. Near such points, the Jacobian matrix becomes singular and the problem becomes difficult to solve
numerically. In these situations, increasing heuristically the loading parameter during the simulation in
order to follow the solution branch is not an option as this approach usually results in the divergence of
the process. Efficient numerical techniques capable of handling the presence of bifurcation points are
therefore necessary and continuation methods have proved to be powerful tools when dealing with these
kind of issues. In Léger et al. (2015), a new implementation technique based on a Schur complement
approach for the Moore-Penrose continuation method, which facilitates the detection of bifurcation
points and enables branch following, was presented. This method has proved to perform well in most sit-
uations; however, in others (i.e. when mesh adaptation is added to the algorithm), some difficulties
appear. In this paper, we therefore present an improved approach, which is much more robust, for the
detection of bifurcation points in nonlinear finite element problems. Numerical examples will be pre-
sented to show the efficiency of the new approach.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the use of numerical methods to solve industrial
problems is constantly increasing. With the complexity of these
problems constantly increasing as well, developing robust, efficient
and accurate numerical methods is a priority. This is especially true
for large deformation hyperelastic problems, where convergence
problems are frequently encountered. These problems can be
related to different issues, but in most cases they are due to dis-
torted elements that appear in the mesh or to the presence of
bifurcation points (where the Jacobian matrix is singular). Bifurca-
tion points, which correspond to eigenvalues of the system, are
quantities of interest [26,21,27]. Detecting such points and follow-
ing the different solution branches passed the critical loads associ-
ated with the bifurcation points are thus important and useful to
better understand the physical properties of the problem we are
solving. The analysis of structural instabilities [6,28], which
includes the detection of bifurcation points, is generally based on
a numerical continuation method (see [9,4,11,15,23,1,22,24]).

In a finite element context, where large systems are frequently
encountered, simply looking at the sign of the determinant of the

Jacobian matrix for the detection of bifurcation points in not an
option as the computation of these determinants end up with
machine overflows. A new implementation technique for the
Moore-Penrose continuation method, which takes advantage of
information already available and facilitates the detection of such
points in a finite element context, was therefore introduced in
[17]. To validate this new algorithm, the classical elastic beam
buckling problem was considered as the bifurcation modes for this
problem are well known (see Le Tallec and Vidrascu [16], Ikeda
et al. [14]). The finite strain incompressible elasticity problem pre-
sented in [2,3] was also used for the validation process. Not only
were we able to detect the bifurcation point presented in those
papers, but we were also able to detect many more bifurcation
points which will be presented in this paper. We note that, at that
point, the validation process was done using fairly regular meshes.

To solve large deformation problems with the finite element
method, two formulations are frequently used in practice: the total
Lagrangian formulation [13] which refers to the initial configura-
tion and the updated Lagrangian formulation [5] which refers to
the most recently calculated configuration. These two formulations
are mathematically equivalent, but the updated Lagrangian formu-
lation tends to perform better in practical applications, as was
shown in [18]. It was also shown in [18,19] that remeshing the ini-
tial configuration, which does not necessitate any transfer of vari-
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ables (meaning that no loss of information results from this), also
enhances the performance of the updated Lagrangian method.
However, when trying to incorporate the detection of bifurcation
points in our complete updated Lagrangian algorithm, we noticed
that remeshing had an effect on the detection of bifurcation points.
Investigation led us to a better understanding of the phenomena
observed and modifications were made to the bifurcation point
detection algorithm in order to obtain a much more robust numer-
ical method, which is the object of this paper.

The paper is organized as follows. Section 2 describes the imple-
mentation technique used for the Moore-Penrose continuation
method and explains how this approach facilitates the detection
of bifurcation points in a finite element context. Section 3 com-
pares the results obtained when using fairly regular meshes versus
adapted meshes. Section 4 describes the improved algorithm for
the detection of bifurcation points while Section 5 is devoted to
the validation of this improved strategy.

2. Moore-Penrose continuation method

When solving large deformation problems, a loading parameter
k, corresponding to either external forces or prescribed displace-
ments or both, implicitly drives the deformation. This parameter
is typically increased gradually until the desired loading, kmax, is
attained. However, increasing heuristically the loading parameter
while using a standard Newton method to solve the nonlinear sys-
tem of equations is highly inefficient as this approach will usually
result in the divergence of the algorithm in the neighbourhood of
limit points or bifurcation points. A more efficient approach is to
use a continuation method where the loading parameter k is
explicitly introduced in the system of nonlinear equations, which
can be expressed as:

FðxÞ ¼ Fðu; kÞ ¼ 0 ð1Þ
with F : RNþ1 ! RN a smooth function. The vector of unknowns, x,
therefore consists of the N degrees of freedom denoted as u plus
the loading parameter.

The Moore-Penrose continuation method, which was shown to
be very robust in the case of large deformation problems (see [18]),
is a predictor-corrector method and can be summarized as follows
(see [10,17]). Starting from a known point xðiÞ 2 RNþ1 on the solu-
tion curve, and given a tangent vector v ðiÞ at that point, the next
point xðiþ1Þ 2 RNþ1 on the solution curve as well as the tangent vec-
tor at that point v ðiþ1Þ can be obtained using the following
algorithm:

� X0 ¼ xðiÞ þ hv ðiÞ

� V0 ¼ v ðiÞ

� For k ¼ 0;1;2; . . . ; kmax

1. Solve the linear system:

AðXkÞdkx ¼ FðXkÞ
Vk>dkx ¼ 0

(
ð2Þ

2. Solve the linear system:

AðXkÞTk ¼ AðXkÞVk

Vk>Tk ¼ 0

(
ð3Þ

3. Update the solution vector:

Xkþ1 ¼ Xk � dkx

4. Update the tangent vector:

Z ¼ Vk � Tk

5. Normalization of the tangent vector:

Vkþ1 ¼ Z
kZk

6. If kFðXkÞk 6 eF and kXkþ1 � Xkk 6 ex, convergence attained:

xðiþ1Þ ¼ Xkþ1; v ðiþ1Þ ¼ Vkþ1

We note that X0 is the prediction point obtained by making a
prediction step of length h in the tangential direction,

AðXkÞ ¼ ½F 0
uðXkÞ F 0

kðXkÞ� is a rectangular matrix of dimension

n� ðnþ 1Þ, dkx ¼ dku dkk

h i>
is a correction vector of dimension

ðnþ 1Þ � 1; kmax represents the maximum number of iterations
allowed while eF and ex are the desired tolerances on F and x

respectively. As for Tk, it represents a correction on the tangent
vector. More details can be found in [17].

As can be seen, to obtain the next point on the solution curve,
two systems need to be solved at each iteration. In matrix form,
these systems are given by:

F 0
uðXkÞ F 0

kðXkÞ
Vk

u

>
Vk

k

 !
dku
dkk

 !
¼ FðXkÞ

0

 !
ð4Þ

and

F 0
uðXkÞ F 0

kðXkÞ
Vk

u

>
Vk

k

 !
Tk
u

Tk
k

 !
¼ AðXkÞVk

0

 !
ð5Þ

where the vectors Vk; Tk and dkx were decomposed into their com-

ponents in the u and k directions (i.e. Vk> ¼ Vk
u Vk

k

h i>
; Tk ¼

Tk
u Tk

k

h i>
and dkx ¼ dku dkk

h i>
). In a finite element context, constructing

and solving these two systems can be very costly. A new algorithm,
based on a Schur complement approach, was therefore introduced
in [17]. This new approach not only solves the systems by using
as much as possible information that is already available, but it
can also be incorporated numerically in a finite element code by
simply adding a postcondition to the Newton method solver. The
following algorithm summarizes the implementation technique of
the Moore-Penrose continuation method when using this approach.

� X0 ¼ xðiÞ þ hv ðiÞ

� V0 ¼ v ðiÞ

� For k ¼ 0;1;2; . . . ; kmax

1. (a) Solve to obtain the standard Newton correction Dk
u;k (for a

fixed value of k):

F 0
uðXkÞDk

u;k ¼ FðXkÞ

(b) Solve for Wk
u:

F 0
uðXkÞWk

u ¼ F 0
kðXkÞ

(c) Calculate the Schur complement bk:

bk ¼ Vk
k � Vk

u �Wk
u

(d) Calculate the Moore-Penrose correction for the load
parameter k:

dkk ¼ � 1
bk

Vk
u � Dk

u;k

(e) Apply the Moore-Penrose correction on the standard
Newton correction:
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