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a b s t r a c t

The objective of the work reported in this paper is to improve the well-known dual Craig-Bampton (DCB)
method. The original transformation matrix of the DCB method is enhanced by considering the higher-
order effect of residual substructural modes through residual flexibility. Using the new transformation
matrix, original finite element models can be more accurately approximated in the reduced models.
Herein, additional generalized coordinates are newly defined for considering the 2nd order residual flex-
ibility. Additional coordinates related to the interface boundary can be eliminated by applying the con-
cept of SEREP (the system equivalent reduction expansion process). The formulation of the improved
DCB method is presented in detail, and its accuracy is investigated through numerical examples.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering practice, the degrees of freedom (DOFs) of
numerical models have been continuously increased, along with
the rapid increase in their complexity. When a complicated struc-
ture consisting with diverse components is designed through the
cooperation of different engineers, it is very expensive to deal with
its finite element models. This is because frequent design modifica-
tions affecting the whole and component models require repeated
reanalysis. For these reasons, a number of model-reduction
schemes have spotlighted its necessity, especially, in the structural
dynamics community [1–36,40]. Among the proposed solutions,
component mode synthesis (CMS) methods are considered very
powerful solutions. With CMS methods, a large structural model
is represented by an assemblage of small substructures; then is
approximated using a reduced model constructed using only the
dominant substructural modes. In CMS methods, it is important
to select the proper dominant modes [2–4].

After pioneering work by Hurty [1] in the 1960s, numerous CMS
methods have been introduced for various applications [5–34]. The
CMS methods can be classified as fixed, free, and mixed-interface
based methods, depending on how the interface is handled. The
most successful fixed-interface based method is the Craig-
Bampton method (CB method) [5] due to its simplicity, robustness,
and accuracy. In contrast, the free-interface based methods [7–9]

proposed earlier were not successful because those methods were
not adequate for either accuracy or efficiency in spite of their
important advantages. These included such as substructural inde-
pendence and easy treatment of various interface conditions
[9,20–22].

In 2004, Rixen [11] introduced a new free-interface based
method as a dual counterpart of the CB method, namely, the dual
Craig-Bampton (DCB) method. In the DCB method, Lagrange multi-
pliers are employed along the interface for assembling substruc-
tures and thus an original assembled finite element (FE) model
can be effectively reduced as a form of quasi-diagonal matrices,
leading to computational efficiency. The most advantageous fea-
ture of the DCB method is that, when a substructure is changed,
entire reduced matrices do not need be updated again because in
the formulation, substructures are handled independently. This
feature also makes it possible to assemble substructures even if
their FE meshes do not match along the interface [16]. For all these
reasons, the DCBmethod is an attractive solution for experimental-
FE model correlation [17–19], as well as FE model updating and
dynamic analysis considering various constraint conditions (con-
tact, connection joint, damage, etc.) [20–22]. However, the DCB
method still needs improvement in accuracy. In particular, the
DCB method causes a weakening of the interface compatibility in
reduced models, resulting in spurious modes with negative eigen-
values [11,14]. If the reduction basis chosen is not sufficient, such
spurious modes may occur in lower modes, which is an obstacle to
approximating the original FE model correctly.
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Recently, fixed-interface based CMSmethods have been success-
fully improved considering the higher-order effect of the residual
modes [10,24,25,29,30]. The motivation of this study is that the
same principle can be adopted for improving free-interface based
methods. In this study, we focus on improving the accuracy of the
DCB method. We derive a new transformation matrix for the DCB
method, improved by considering the 2nd order effect of residual
substructural modes. One difficulty comes from the fact that the
improved approximation of substructural dynamic behavior con-
tains unknown eigenvalues. In the formulation, unknown eigenval-
ues are considered additional generalized coordinates. These are
subsequently eliminated using the concept of the systemequivalent
reduction expansion process (SEREP) to reduce computational cost.
Finally, improved solution-accuracy is obtained in the final reduced
systems. Furthermore, theuseof thepresentmethodavoids creation
of spurious modes with negative eigenvalues in the lower modes.

In Section 2, we briefly review the original DCB method; and
formulation of the improved DCB method is presented in Section 3.
Section 4 describes the performance of the improved DCB method
through various numerical examples and in Section 5, we explore
the negative eigenvalues in lower modes for the original and
improved DCB methods. Finally, conclusions are presented in
Section 6.

2. Dual Craig-Bampton method

In this section, we briefly introduce the formulation of the dual
Craig-Bampton (DCB) method, see Refs. [11,14,20,31] for detailed
derivations.

In the DCB method, a structural FE model is assembled by Ns

substructures as in Fig. 1a. The substructures are connected
through a free interface boundary C (Fig. 1b). The compatibility
between substructures is explicitly enforced using the following
constraint equation

XNs

i¼1

bðiÞTuðiÞ
b ¼ 0; ð1Þ

in which uðiÞ
b is the interface displacement vector of the i-th sub-

structure, and bðiÞ is a signed Boolean matrix.
The linear dynamic equations for each substructure Xi can be

individually expressed by

MðiÞ€uðiÞ þ KðiÞuðiÞ þ BðiÞl ¼ fðiÞ; i ¼ 1; � � � ;Ns; ð2Þ

where MðiÞ and KðiÞ are the mass and stiffness matrices of the i-th

substructure, uðiÞ is the corresponding displacement vector, fðiÞ is

the external load vector applied to the substructure, and BðiÞl is

the interconnecting force between substructures with BðiÞ ¼ 0
bðiÞ

� �
and the Lagrange multiplier vector l. Note that ð €Þ ¼ d2ðÞ=dt2 with
time variable t.

Assembling the linear dynamic equations for each substructure
in Eq. (2) using the compatibility constraint equation in Eq. (1), the
dynamic equilibrium equation of the original assembled FE model
(see Fig. 1c) is constructed as
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75,where M and K are block-diagonal mass

and stiffness matrices that consist of substructural mass and stiff-

ness matrices (MðiÞ and KðiÞ).
The global eigenvalue problem is defined for the original assem-

bled FE model

KgðugÞi ¼ ðkgÞiMgðugÞi for i ¼ 1; � � � ;Ng ; ð4Þ

with Kg ¼ K B
BT 0

� �
, Mg ¼ M 0

0 0

� �
, in which ðkgÞi and ðugÞi are the

global eigenvalue and eigenvector corresponding to the i-th global
mode, respectively, and Ng is the number of DOFs in the original
FE model. This number consists of interface and substructural DOFs

(Ng ¼ Nb þ
PNs

i¼1N
ðiÞ
u , where Nb is the number of interface DOFs and

NðiÞ
u is the number of DOFs of the i-th substructure).
Because each substructure can be seen as being excited through

interconnecting forces, the displacement of each substructure is
assumed in the original DCB formulation, as

uðiÞ � �KðiÞþBðiÞlþ RðiÞaðiÞ þHðiÞqðiÞ; i ¼ 1; � � � ;Ns; ð5Þ

where KðiÞþ is the generalized inverse matrix of KðiÞ (the flexibility

matrix), RðiÞ is the rigid body mode matrix, HðiÞ is the matrix that
consists of free interface normal modes, and aðiÞ and qðiÞ are the cor-
responding generalized coordinate vectors.

The rigid body and free interface normal modes of the i-th sub-
structure are calculated by solving the following eigenvalue
problems

KðiÞðuðiÞÞj ¼ kðiÞj MðiÞðuðiÞÞj; j ¼ 1; � � � ;NðiÞ
u ; ð6Þ

in which kðiÞj and ðuðiÞÞj are the j-th eigenvalue and the correspond-
ing mode, respectively. Note that the mode vectors are scaled to sat-
isfy the mass-orthonormality condition.

The free interface normal mode matrix HðiÞ in Eq. (5) consists of
dominant and residual normal modes

HðiÞ ¼ HðiÞ
d HðiÞ

r

h i
; ð7Þ

in which HðiÞ
d and HðiÞ

r includes NðiÞ
d dominant free interface normal

modes, and the remaining modes, respectively.
The displacement of the substructure can be approximated

using only the dominant modes

uðiÞ � �KðiÞþBðiÞlþ RðiÞaðiÞ þHðiÞ
d qðiÞ

d ; ð8Þ

where the term �KðiÞþBðiÞl is the static displacement by intercon-
necting forces, and this term can be expressed using modal
parameters

� KðiÞþBðiÞl ¼ �HðiÞKðiÞ�1
HðiÞTBðiÞl with

KðiÞ ¼ diag kðiÞ1 ; kðiÞ2 ; . . . kðiÞ
NðiÞ
u

� �
; ð9Þ

where KðiÞ is the substructural eigenvalue matrix.
Substituting Eq. (7) into Eq. (9), the static displacement can be

divided into dominant and residual parts

�KðiÞþBðiÞl ¼ �HðiÞ
d KðiÞ�1

d HðiÞT
d BðiÞl�HðiÞ

r KðiÞ�1

r HðiÞT
r BðiÞl; ð10Þ

with the corresponding substructural eigenvalue matrices KðiÞ
d and

KðiÞ
r defined by

KðiÞ
d ¼ HðiÞT

d KðiÞHðiÞ
d ; KðiÞ

r ¼ HðiÞT
r KðiÞHðiÞ

r : ð11Þ

Using Eq. (10) in Eq. (8), the following equation is obtained:
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