
Generalized warping and distortional analysis of curved beams with
isogeometric methods

Ioannis N. Tsiptsis ⇑, Evangelos J. Sapountzakis
Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, Zografou Campus, GR-157 80 Athens, Greece

a r t i c l e i n f o

Article history:
Received 8 February 2017
Accepted 12 June 2017
Available online 22 June 2017

Keywords:
Curved beam
Generalized warping
Distortion
Isogeometric analysis
Curvature

a b s t r a c t

Towards improving conventional beam elements in order to include distortional effects in their analysis,
independent parameters have been taken into account in this study. Curved beam’s behavior becomes
more complex, even for dead loading, due to the coupling between axial force, bending moments and tor-
que that curvature produces. Thus, the importance of simulating geometry exactly arises in order to
approximate accurately the response of the curved beam. For this purpose, the isogeometric tools (b-
splines and NURBS), either integrated in the Finite Element Method (FEM) or in a Boundary Element
based Method (BEM) called Analog Equation Method (AEM), are employed in this contribution for the sta-
tic analysis of horizontally curved beams of open or closed (box-shaped) cross sections. Responses of the
stress resultants, stresses and displacements to static loading have been studied for various cross
sections.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Refined models either straight or curved with shell or solid ele-
ments are widely used in structures, such as for example the deck
of a bridge with a thin-walled cross section, for stress or strain
analysis. Over time, higher order beam theories have been devel-
oped to include nonuniform warping and distortional effects in
beam elements which exhibit important advantages over more
refined approaches [1]. The evaluation of the cross sectional prop-
erties, which are finally incorporated in the one-dimensional beam
analysis, is associated with the accuracy of the model regarding the
cross sectional behavior. Over the past decades, classical beam the-
ories based on specific assumptions fail to describe accurately the
structural behavior of beam elements, especially in more complex
formulations such as in curved geometries. Among these theories,
that of Saint-Venant (SV) still plays a crucial role due to the fact
that the analysis reduces to the evaluation of warping and distor-
tional functions over the cross sectional domain. However, this
solution is exact for the uniform warping of a beam (warping/dis-
tortional deformations are not restrained). Towards improving SV
theory, several researchers investigated the so-called SV’s principle
(stated in [2]) as well as the SV’s end-effects in order to derive a

more general formulation of beams’ kinematics. In most of these
studies, the solution is obtained as the sum of the SV’S solution
and the residual displacements corresponding to the end-effects,
as it will be later explained.

In the majority of past research works, thin-walled cross sec-
tions have been studied due to their low self-weight comparing
to solid ones and, thus, their use in practice. These cross sections
are more susceptible to torsional and distortional effects. Vlasov
(1961) in [3] presented the Thin Tube Theory (TTT) and treated dif-
ferent cross section types as special cases of this general theory.
Kollbrunner and Basler (1969) in [4] and Heilig (1971) in [5] were
later reformulated TTT for multi-cell boxes with arbitrary cross
sections. Kristek (1970) in [6] obtained analytical solution for sim-
ple practical cases and separated the analysis of transverse distor-
tion from that of torsion with longitudinal warping employing the
superposition principle. Wright, Abdel-Samad and Robinson
(1968) in [7] studied the distortional warping response of single-
cell box girders with longitudinally and transversely stiffened
plates employing the beam on elastic foundation (BEF) analogy.
Steinle (1970) in [8] tackled the torsional distortion problem and
introduced distortional stress resultants in the analysis. Kollbrun-
ner and Hajdin (1975) in [9] dealt with the extension of the beam
theory of prismatic folded structures to include the deformation of
the cross section for open and closed cross sections including
warping. Other research efforts later expanded TTT considering
only box-shaped cross sections (single- or multi-cell) and, thus,
being not general [10–15]. Schardt (1989, 1994) in [16,17]
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developed an advanced formulation known as Generalized Beam
Theory (GBT) which is a generalization of the classical Vlasov beam
theory in order to incorporate flexural and torsional distortion. A
distinguishing feature of GBT stems from the general character of
its cross sectional analysis which enables the determination of
cross-section deformation modes as well as their categorization
to global, distortional or local ones. Discretization within the frame
of GBT cross sectional analyses depends on the topology of nodes
(dependent, independent or intermediate nodes for branched or
unbranched sections) and cross sectional shapes (open- or
closed-shaped). Further developments of GBT avoid some of its
cumbersome procedures through eigenvalue cross sectional analy-
sis [18–23]. The classification of the cross sections with respect to
their geometry is not needed with this approach and the most
important shape modes are obtained (compared to those derived
by GBT). These approaches are employed nowadays by several
researchers. Camotim, Silvestre and co-researchers expanded the
method to cover a variety of cross sections, orthotropic materials,
as well as geometrically nonlinear and inelastic problems [24–
26]. Towards solving the problem for arbitrarily shaped homoge-
neous or composite cross sections, El Fatmi and Ghazouani
(2011) in [27] presented a higher order composite beam theory
(denoted HOCBT) that starts from the exact expression of SV’s solu-
tion and introduces in- and out-of-plane independent warping
parameters for symmetric orthotropic cross sections with the abil-
ity to extended it for arbitrary ones. However, in-plane warpings
are only due to the flexural and axial deformation modes and, thus,
it could be stated that this research effort studies Poisson ratio
effects rather than distortional ones. Ferradi and Cespedes (2014)
in [28] presented the formulation of a 3D beam element solving
an eigenvalue problem for the distortional behavior of the cross
section (in-plane problem) and computing warping functions sep-
arately by using an iterative equilibrium scheme. Genoese, Geno-
ese, Bilotta and Garcea (2014) in [29] developed a beam model
with arbitrary cross section taking into account warping and dis-
tortion with their evaluation being based on the solution of the
3D elasticity problem for bodies loaded only on the terminal bases
and a semi-analytic finite element formulation. Finally, Dikaros
and Sapountzakis (2016) in [30] presented a general boundary ele-
ment formulation for the analysis of composite beams of arbitrary
cross section taking into account the influence of generalized cross
sectional warping and distortion due to both flexure and torsion. In
this proposal, distortional and warping functions are evaluated by
the same eigenvalue problem and in order of importance.

Regarding horizontally curved beams subjected to vertical or
radial loads, they inherently exhibit a more complex behavior com-
paring to straight formulations due to the fact that the effects of
primary and secondary torsion are always coupled to those of
bending and cross section distortion either for centered or eccen-
tric loads. Dabrowski (1968) in [31] elaborated Vlasov’s theory
and introduced distortional behavior of box girders with a sym-
metric cross section. His model introduces the distortion angle as
the single degree of freedom which measures the magnitude of
the cross-sectional distortion. Bazant and Nimeiri (1974) in [32]
proposed the skew-ended finite element in order to implement
the theory of non-uniform torsion for straight or curved thin-
walled cross sections. Oleinik and Heins (1975) in [33], and Heins
and Oleinik (1976) in [34] employing Vlasov’s and Dabrowski’s
theories studied the structural behavior of curved box girders. In-
plane deformations were approximated using a differential equa-
tion which was solved employing the finite difference method. In
addition to these research efforts, Sakai and Nagai (1981) in [35],
and Nakai and Murayama (1981) in [36] presented several results
on the design procedures of the intermediate diaphragms for
curved girders and noted that these play a very important role in
moderating distortional warping of girders. Meanwhile, Martin

and Heins (1978) in [37] expanded Dabrowski’s equation, which
predicts the cross-sectional deformations, so that the angular
deformations induced at given points along an I-girder curved
bridge can be calculated. Zhang and Lyons (1984) in [38,39]
employed Dabrowski’s theory combined with Finite element
method to develop a multi-cell box element for the analysis of
curved bridges. Nakai and Yoo (1988) in [40] presented an
extended study on the analysis and design of curved steel bridges.
Yabuki and Arizumi (1989) in [41] employing BEF analogy for dis-
tortion proposed spacing provisions which can be utilized for steel-
plated intermediate diaphragms. Razaqpur and Li (1994) in [42]
extended their previous theory to curved thin-walled box beams.
Petrov and Geradin (1998) in [43] employing the same concept
with El Fatmi and Ghazouani [27] for straight beams formulated
a theory for curved and pre-twisted beams of arbitrary homoge-
neous cross sections, covering geometrically nonlinear range as
well. Kim and Kim (2002) in [44] developed a theory for thin-
walled curved beams of rectangular cross section by extending
the theory developed earlier for straight beams taking into account
warping and distortional deformations. Park, Choi and Kang (2005)
in [45] expanded their previous work [13], which was limited to
straight box girder bridges, to curved formulations. They devel-
oped a curved box beam element which was employed in order
to develop design charts for adequate spacing of the intermediate
diaphragms of curved bridges. Flexural and torsional displacement
functions have been based on those proposed for doubly symmet-
ric cross section by Kang and Yoo (1994) in [46] while distortional
functions have been derived for a mono-symmetric cross section as
in [12]. Despite the practical interest of their study, their proposal
cannot accommodate elastic constraints and due to other assump-
tions made lacks of generality. In other research efforts, the vibra-
tion problems of thin-walled curved box girder bridges due to
moving loads have been investigated. The curved box girder
bridges have been numerically modelled using finite elements
which take into account the torsional warping, distortion and dis-
tortional warping [47–49]. Other recent research efforts as the fol-
lowing ones mainly constitute design guides with new formulae
for specific practical cases rather than a generalized theory for
the analysis of curved beams. Particularly, in the study of Zhang,
Hou, Li and Wang (2015) [50], a curved girder is simplified to
straight one by using the M/r method and calculation formulae
for determining the required diaphragm spacing are obtained by
regression analyses. Yoo, Kang and Kim (2015) in [51] applied
the concept of the BEF analogy for the analysis of distortional stres-
ses of horizontally curved box-girders. The proposed procedure is
capable of handling simple or continuous single cell box girders
(or separated multi-cell box girders) with rigid or deformable inte-
rior diaphragms or cross-frames. Towards establishing a more gen-
eral theory, Arici and Granata (2016) in [52] employed the
Hamiltonian Structural Analysis Method for the analysis of straight
and curved thin-walled structures on elastic foundation extending
the so-called GBT. To the authors’ knowledge, there are no research
efforts that introduce a unified distortional and warping eigen-
value analysis of arbitrarily shaped cross sections to the analysis
of curved beams.

In modern regulations and design specifications, the impor-
tance of torsional and distortional effects in stress or strain analysis
of structural members is recognized. Particularly, in sub-sections
6.2.7.1 and 6.2.7.2 of EN 1993-2, Eurocode 3: Design of steel struc-
tures – Part 2: Steel bridges, regarding torsion, the designer is
obliged to keep the distortional stresses under a specific limiting
value or follow some general design rules in case of neglecting dis-
tortion. These are presented in clauses (1)–(9) of section 6.2.7,
regarding torsion, of EN 1993-1-1, Eurocode 3: Design of steel
structures – Part 1-1: General rules and rules for buildings. Never-
theless, no guidelines and specific modelling methodologies
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