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a b s t r a c t

A finite element formulation for the simulation of two-dimensional frictional contact problems undergo-
ing wear effects is presented. The approach considers multibody contact and accounts for finite configu-
ration changes due to both deformation and wear. The contact discretization is based on the Mortar
method while the enforcement of contact constraints is fulfilled with Lagrange multipliers defined in a
linear or a quadratic dual-basis. The effects of wear are predicted with the Dissipated energy method
using an internal state variable approach that increases the distance between worn bodies by an addi-
tional gap. The frictional conditions with wear are enforced using nonlinear complementarity functions,
which are solved using a semi-smooth Newton method. A strategy for modeling the contact surface evo-
lution and alleviate the deformation induced element distortion is also presented. The consistent lin-
earization of all quantities yields a robust and efficient algorithm. Numerical examples demonstrate
the performance of the proposed framework.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Wear is a complex physical phenomenon that is characterized
by the removal of material from the surface of a body due to the
frictional contact interaction with another surface. The wear evolu-
tion is typically slow and essentially depends on the materials and
surface properties of the contact pair together with the contact
conditions. Several attempts have been made to both understand
and model the evolution of wear under different scenarios. A com-
prehensive literature review of wear models and predictive equa-
tions was presented in [1].

In order to quantify wear, the Archard phenomenological model
[2] is commonly applied. This model establishes a relation between
the wear volume and the work of the normal force through the
sliding distance. It employs the input variables from the contact
setting such as the prescribed normal load, the displacement
amplitude, the friction coefficient and hardness of the softer mate-
rial to calculate the wear loss [3]. An alternative model for the evo-
lution of wear is the so-called Dissipated energy method [4,5]. This
model creates a relation between the wear volume and the accu-
mulated dissipated energy through an independent coefficient:
the energy wear coefficient. Recent studies have shown that the

Dissipated energy method can obtain rather consistent results in
problems involving small amplitude of the relative sliding motion
[6,7] and in problems with unidirectional sliding [8,9]. Therefore,
this method was adopted in this work.

The evolution of wear can strongly influence the contact prob-
lem. From one side, the material loss in the contact zone can pro-
mote significant shape changes and lead to the redistribution of
contact tractions. This, on the other hand, can considerably affect
the evolution of wear. Due to the coupling effects involved, the
solution of this class of problems is a challenging task and the sub-
ject of current research. In the literature, two classes of contact
algorithms including wear in finite element analysis can be found.
In the first class, the contact problem is solved and the evolution of
wear is computed in a post processing step [10]. Then, the accumu-
lated wear is added to the normal gap [11,12] which changes the
contact conditions by increasing the distance between the two
bodies. This approach neglects the shape changes of the contact
surface on the numerical solution and is mainly applicable for
problems that create small amounts of wear [13–17]. In the second
class, the contact surface evolution due to the accumulated wear is
modeled and the coupling between deformation and wear is
included in the numerical treatment. Several strategies have been
proposed in this case. One approach consists in performing the
finite element analysis of the contact problem and then the
evaluation of the wear depth [7,18,19]. The geometry of the
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contact surface is updated according to the computed wear depth
and the nodes within the so-called wear-box are repositioned in
order to mitigate the distortion of degenerated finite elements. A
different approach consists in employing and adaptive remeshing
algorithm to overcome the distortion of elements [20]. In [21]
the evolution of the contact surface is modeled by introducing a
time-dependent material configuration that corresponds to the
undeformed body of the shape changed due to wear.

A frictional contact formulation for the simulation of progres-
sive wear effects in finite deformation problems is presented. The
necessary contact surface discretization is based on the Mortar
method to avoid the well know problems of node-to-segment con-
tact formulations and to obtain optimal convergence rates from the
finite element solution [22]. We follow an approach developed by
[23] that is based on a continuous normal field of the discretized
contact surface for definition of the mortar segments. The enforce-
ment of contact constraints is realized with dual Lagrange multipli-
ers, which can be locally eliminated from the global system of
equations by static condensation. We consider both linear and
quadratic dual basis for the Lagrange multipliers coupled with lin-
ear and quadratic finite elements. The objective is to assess the
improvement of the quadratic dual basis for problems where the
contact tractions are very sensitive to the curvature of contacting
surfaces discretized with non-matching meshes and wear prob-
lems. In these cases, the error computing the gap with the Mortar
method can have a relevant impact on the global error of the finite
element solution [24]. The modeling of wear is undertaken with an
internal state variable whose evolution is based on the Dissipated
energy method. This variable is directly inserted into the contact
constraints enforcing a modified non-penetration condition
accounting for wear effects. The contact, friction and wear inequal-
ity constraints are reformulated in a set of so-called complemen-
tarity functions. For problems where the rate of wear depth is
small compared to the deformation related to the contact forces,
it might be possible to use the formulation from Refs. [25,26] to
calculate the complementary functions. Nevertheless, for problems
where the rate of wear is important, such as steady-state wear pro-
cesses with large increments, the influence of the rate of wear
depth must be considered on the solution within one time step
to avoid convergence failure. Therefore, in this proposed frame-
work, the effect of the wear is considered in the evaluation of the
complementarity functions as well. The combination of the com-
plementarity functions with the equilibrium equations, which
include nonlinear constitutive material behavior at finite strains
[27–31], leads to a system of nonlinear and non-differentiable
equations that can be solved in terms of a semi-smooth Newton
method. This modeling approach is mainly suitable for problems
leading to a small amount of wear and encompasses the so-
called Lagrangean step. To our knowledge, this is the first imple-
mentation of a two dimensional mortar contact formulation with
wear at finite strains in the context of dual Lagrange multipliers
with consistent linearization. Nevertheless, the modeling of the
progressive evolution of the contact surface can be critical when-
ever shape changes due to deformation and wear are finite. There-
fore, in the present work, a strategy for updating the geometry of
the contact surface and for reallocating the surrounding nodes is
proposed. In this scenario, the previously mentioned Lagrangean
step is followed by a shape evolution step within a single time
interval. This approach allows for significant wear loss.

Throughout this contribution, we focus on the extension of the
Mortar formulation towards wear and refer to [32], and references
therein, for the finite inelastic strain formulation employed in this
work. In Section 2, the description of the two body frictional con-
tact problem with wear in the context of finite deformations is
undertaken. The governing equations of the Dissipated energy

method are presented in Section 3. The boundary value problem
is converted into a weak formulation in Section 4. The spatial dis-
cretization of the contact virtual work, the wear energy and the
nonlinear contact constraints based on dual Lagrange multipliers
are described in Section 5. Then, in Section 6 the solution proce-
dure employed, based on the so-called primal-dual active set strat-
egy with complementary functions is presented. The material
removal modeling strategy adopted is addressed in Section 7.
Numerical examples are provided in Section 8 to highlight the
accuracy and robustness of this framework. Final remarks are given
in Section 9.

2. Problem definition

A two body finite deformation frictional contact problem with
wear is shown in Fig. 1. The bodies are represented by the open
sets Xs

0 and Xm
0 , fXs

0 [Xm
0 ¼ X0 : X0 � R2g in the reference config-

uration and the superscripts s and m represent the common
nomenclature employed in contact mechanics of a Slave and aMas-
ter body. The boundaries of subset X0 are divided in a contact zone,
Cc ¼ Cs

c [ Cm
c

� �
, a Neumann boundary, CN and a Dirichlet bound-

ary CD.
The symbol u represents the mapping between the reference

configuration X (at time 0) and the current configuration x (at time
t) while x̂m is the closest projection of xs onto the master surface,
cmc , in the current configuration (see Fig. 1). The same relation

applies to bXm and Xs in the reference configuration. The Boundary
Value Problem (BVP) given in terms of the vector of nodal displace-
ments, u and the Cauchy stress tensor, r, as follows,

div riðuÞ� �þ b̂i ¼ 0 in Xi
t ;

riðuÞgi ¼ t̂i on ciN
ui ¼ u Xi; t

� �
� Xi ¼ ûi on ciD; i ¼ s;m:

ð1Þ

where b̂i is the body force experienced by the solids in the current

configuration, Xi
t . The spatial counterparts of the three boundaries

are denoted by cc , cN and cD. The current outward unit normal vec-
tor on the Neumann boundary, ciN , is denoted by gi. Prescribed dis-
placements on the Dirichlet boundary, ciD, are represented by ûi and
prescribed tractions on the Neumann boundary by t̂i. The index i
emphasizes that the BVP conditions must be attained for all bodies
involved. Quasi-static equilibrium is assumed. For the solution of
the BVP, a hyperelastic-based multiplicative framework is
employed together with an algorithmic approach for modeling the
behavior of nonlinear dissipative materials. This procedure is exten-
sively discussed in [32].

In order to enforce non-penetration between the contact sur-
faces, the Kuhn-Karush-Tucker (KKT) conditions must be fulfilled.
However, since the problem also includes the evaluation of mate-
rial loss during the contact interaction, a new positive variable
must be introduced: the wear depthw. This variable will be treated
as an internal state variable that represents an additional gap,
which is defined along the current outward normal vector on the
slave surface (see Fig. 1). This approach was firstly introduced in
[33]. The KKT conditions in the normal direction are expressed
by the following set of constraints,

gðXs; tÞ þwðXs; tÞ P 0; ð2Þ

pg � 0; ð3Þ

pg½gðXs; tÞ þwðXs; tÞ� :¼ 0: ð4Þ
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