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a b s t r a c t

Dynamic bucking criteria for spherical shells of a rectangular form under sinusoidal lateral load are pro-
posed and developed taking into consideration geometric and physical non-linearity. A mathematical
model of thin shallow shells is constructed on the basis of the Kirchoff-Love hypothesis and the von
Kármán geometric non-linearity, whereas the physical non-linearity follows the Ilyushin theory of plastic
deformations. Reliability of the results is proved by comparing them with the results obtained by means
of higher-order approximations of the Faedo-Galerkin method. Three scenarios (Feigenbaum, Ruelle-
Takens-Newhouse and Pomeau-Manneville) are detected while transiting from regular to quasi-
periodic/chaotic vibrations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Great effort has been carried out in aircraft, ship building, mar-
ine structures, aeronautic industries as well as robotics, micro-
devices fabrication and bioengineering to improve high levels of
strength-to-weight and stiffness-to-weight relations while reduc-
ing the live cycle costs of the advanced materials either of conven-
tional or composite structures simultaneously keeping their
required dynamical stability performance and structural integrity.

In particular, engineers working in the aeronautical and aero-
space industries are awaiting for reliable and validated design rec-
ommendations and criteria dedicated to further weight savings by
taking into account the possibilities of safe operation of the struc-
tures in either buckling or postbuckling regimes.

These challenging demands require investigation of non-linear
complexity of design and geometry, loading ways and conditions,
mixed boundary conditions, initial imperfections, and in many
cases also thermal and electromagnetic fields interaction. The

mentioned technologically motivated requirements imply updat-
ing of the mathematical modeling of the structures/structural
members to achieve validated and reliable prediction of the buck-
ling and post buckling states as well as their possible damage and
collapse.

Dynamic buckling of structural members has a long history in
mechanics and include seminal works of Budiansky, Hutchinson
and Elishakoff [1–3]. Numerical study of the buckling and initial
post-buckling behaviour of clamped shallow spherical shells sub-
ject to axisymmetric ring load has been carried out by Akkas and
Bauld [4]. Ball and Burt [5] proposed a novel criterion for dynamic
buckling under the nearly axisymmetric load of the shallow spher-
ical shells. The authors determined critical buckling pressures for a
large range of shell sizes.

More recently the state-of-the art of vibrations of plates and
shells including stability problems with emphasis on novel nonlin-
ear phenomena exhibited by the mentioned structural members
has been addressed by Amabili [6].

In the traditional approach, dynamic buckling phenomena con-
cern fastly increasing in-surface compressive loads or time depen-
dent in-surface displacement of the boundaries. In the beginning of
the buckling oriented research, the problems have been usually
modeled by linear/non-linear second order ODEs with constant
or time-dependent coefficient, i.e. by one-degree-of-freedom
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systems and typically by taking into account either step or impul-
sive load (see [7] for more references).

Non-linear dynamics of isotropic shallow spherical shells has
been studied by Budiansky and Roth [8] (the Galerkin method
has been used) and Simitses [9], where the Ritz-Galerkin approach
has been employed. Both finite difference method (FDM) and finite
element method (FEM) have been applied based on the displace-
ment buckling criterion by Kao [10], Saigal et al. [11], and Yang
and Liaw [12]. Liaw and Yang [13] studied symmetric/asymmetric
dynamic buckling of laminated thin shells by taking into account
orthotropic and anisotropic material properties, axisymmetric
and asymmetric imperfections and Rayleigh viscous damping. In
addition, Huyan and Simitses [14] studied the problems of
dynamic buckling of geometrically imperfect cylindrical shells sub-
ject to both axial compression and bending moment by FEM with
an emphasis given to estimation of the dynamic critical loads.

The non-linear axisymmetric dynamics of clamped laminated
angle-ply composite spherical caps subject to impact-type loads
of infinite duration has been studied by Ganapathi et al. [15], and
the obtained solution has been validated through the analytical/3D
FEM analysis. Wei et al. [16] have investigated analytically and
numerically the dynamic buckling of thin isotropic thermo-
viscoplastic cylindrical shells compressed with an uniform axial
velocity. The thin-walled carbon fiber reinforced shell structures
under axial compression have been studied using FEM by Bisagni
[17]. It has been shown that in the case of short time duration,
the dynamic buckling loads were larger than the static ones,
whereas increase of the load duration yielded decrease of the
dynamic buckling load quickly achieving significantly smaller val-
ues than those regarding the static loads.

In spite of the purely numerical approaches aimed on investiga-
tion of dynamic buckling of shells, there exist also more theoreti-
cally oriented approaches focused on employing Hamiltonian
formulation. For example, Steele and Kim [18] proposed a modified
mixed variational principle and the state-vector equation yielding
the so called Hamiltonian canonical equation with spatial/indepen-
dent variables. This idea of the variables separation through the
Hamiltonian principle has been generalized by Zhong [19], and
by Xu et al. [20].

More recently, Sun et al. [21] employed a symplectic method
yielding the Hamiltonian canonical equations in dual variables
while studying the dynamic buckling of cylindrical shells under
an axial impact. Both critical load and buckling mode are found
by solving the symplectic eigenvalues and the associated solutions,
respectively.

There is also another competing approach to omit drawbacks
given by a direct/standard use of FEM incremental-iterative analy-
sis, which is computationally expensive and sometimes difficult in
the results interpretation. There exist a large record of papers and
monographs devoted to semi-analytical and asymptotic/
perturbation approaches devoted to study stability and buckling
phenomena of structural members (for example see monographs
[22–24]). There are also combined approaches, which for a sake of
simplicity are not referenced here, focused on applications of
perturbation analysis method with numerically-based approaches.

For instance, Schokker et al. [25] employed a perturbation tech-
nique for dynamic buckling analysis of composite cylindrical shells
using the p-version of FEM, whereas Rahman and Jansen [26]
applied the perturbation-based reduction procedure to study
dynamic buckling of shell structures, which has been implemented
to FEM code.

More recently, Fan et al. [27] analyzed the critical dynamic buck-
ling load of cylindrical shells with arbitrary axisymmetric thickness
variation with time-dependent uniform external pressure. Match-
ing the Fourier series expansion, the regular perturbation method

and the Sachenkov-Baktieva method, the analytical formulas have
been derived governing the critical buckling load.

The geometrically non-linear sandwich shell theory introduced
by Hohe and Librescu [28,29] has been utilized to study of load-
frequency interaction phenomena in the dynamics buckling
response of soft-core sandwich plates/shells by Hohe [30].

More recently, Paimushin [31] investigated a possibility for
simplification the refined linearized equations of perturbed motion
to identify the buckling mode shapes of isotropic spherical shells
under external hydrodynamic pressure.

Paulo et al. [32] analyzed numerically the aluminium stiffened
panels subject to axial compression with respect to the initial geo-
metrical imperfections and material properties.

The so far described state-of-the-art of the investigation of
buckling and postbuckling regimes of shells indicates a need of fur-
ther research on this topic, in particular, when bifurcation and
chaotic phenomena are taken into account. The originality and dif-
ference of our paper in comparison to the so far discussed works
includes the following aspects. First, on the contrary to the refer-
enced papers, we have included the physical non-linearity based
on the Ilyushin theory of plastic deformations. The problem of
dynamic buckling (new dynamic buckling criteria has been pro-
posed) and other bifurcations has been coupled with the chaos the-
ory (numerous novel computational results of non-linear
dynamical behaviour of the spherical shells subject to harmonic
load have been detected, illustrated, and discussed).

Second, contrarily to the mentioned papers aimed at sudying
non-linear dynamics and buckling of shells using the perturbation
methods, we have employed the FDM (Finite Difference Method)
and the BGM (Bubnov-Galerkin method in higher approximation)
putting emphasis on the analysis of convergence results as well
as the results validity and reliability. In other words, our results
are not limited to a few degrees of freedom, as it takes place while
using asymptotic/perturbation/multiple scale methods, but we
consider the studied shell as a continuous object with an infinite
number of degrees of freedom.

Furthermore, we have employed novel numerical techniques
and characteristics to study non-linear PDEs governing dynamics
of rectangular spherical shells, which exhibits a difference between
the present and the so far mentioned papers [33–37].

The paper is written in the following way. In Section 2 main
assumption of the further investigated shell models are given
together with associated stress-strain equations. The Hamiltonian
variational principle yielding the governing PDEs and the boundary
conditions is presented in Section 3. Method of solution via FDM
(finite difference method) is illustrated in Section 4. The results
reliability is discussed in Section 5, whereas the convergence anal-
ysis is carried out in Section 6. Scenarios of transition from regular
to chaotic vibrations are detected, illustrated and discussed in Sec-
tion 7 for different types of boundary conditions. The particular
emphasis is devoted to shell buckling phenomena under time
dependent load. Section 8 is devoted to concluding remarks
regarding the carried out research.

2. Main assumptions

Let us consider a shallow shell of a rectangular form, having
dimensions a; b;h along axes x1, x2, x3, respectively. The origin of
the coordinate system is located in the left top corner of the shell,
in its mid-surface. Axes x1; x2 are parallel to the edges of the shell,
while the axis x3 is directed inward the curvature. In this specified
system of coordinates the shell is defined as a three-dimensional
area X, as follows: X ¼ x1; x2; x3 : ðx1; x2; x3Þ 2 ½0;a� � ½0; b��f
½�h=2;h=2�g (see Fig. 2.1).
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