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a b s t r a c t

Formulation of a partition of unity (PU) based four-node tetrahedral element with continuous nodal
stress (Tetr4-CNS) and its applications to the analysis of linear elasticity problems in three-dimension
are presented in this paper. By simply using the same mesh as the classical tetrahedral element
(Tetr4), Tetr4-CNS element is able to obtain continuous nodal stress without recourse to stress smoothing
operation in the post-processing process, and to construct high order global approximation without add-
ing extra nodes or nodal DOFs. Moreover, it is free from the linear dependence problem which cripples
many of the PU-based methods. A series of numerical tests are carried out to evaluate the performance
of the Tetr4-CNS element. The numerical results show that accuracy through the proposed element is
superior to that through Tetr4 element and eight-node hexahedral element (Hexa8). More importantly,
the proposed element has excellent mesh distortion tolerant capabilities.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In simulating engineering problems, such as dam engineering,
tunneling and underground space, it is of great importance to
obtain the displacement and stress fields around the concerned
areas. If the displacement or stress in these areas exceeds allow-
able value, then reinforcement measures should be carried out.
Accurate prediction of the displacement and stress fields within
the problem domain using analytical or semi-analytical method
is only available for problems with simple geometry and boundary
conditions. When it comes to deal with engineering problems with
complex geometry and boundary conditions, numerical
approaches have shown to be more suitable.

Although the finite element method (FEM) [1,2] has been one of
the most popular numerical methods and successfully used in
many fields of engineering, the method however is not free from
drawbacks. The shape function for FEM with standard DOF is only
C0 continuous, thus the nodal gradient fields, e.g., the stress field, is
discontinuous across element boundaries, and stress smoothing
operation is needed in the post-processing process. Moreover,
results obtained from some classic isoparametric elements, such
as parabolic quadrilateral element (Quad8) are very sensitive to
mesh distortions [3]. Since the FEM has to deploy conformingmesh
to discretize the domain of problem, distorted mesh cannot be
avoided in solving geometric nonlinear problems and crack propa-

gation problems. Recent effort on reducing mesh distortion in solv-
ing crack propagation problems can be found in [4,5].

Alternatively, a series of other numerical methods have been
proposed to overcome the difficulty encountered in FEM, such as
the class of meshfree methods [6–10], the extended finite element
method (XFEM) [11], the generalized finite element method
(GFEM) [12], the numerical manifold method [13–19] and the iso-
geometric analysis [20,21]. Each numerical method has its own
advantages and disadvantages. For example, the meshfree methods
have advantages in solving crack propagation problems [22] and
impact-induced failure [23], because they do not need a mesh to
discretize the computational domain and are therefore immunized
from mesh distortions. However, shape function for some of the
meshfree methods may not possess the much desired Kronecker-
delta property, resulting in a more complex manner to impose
the essential boundary conditions than the FEM. Besides, high
computational cost and complex process in constructing the shape
function will deteriorate the stability and efficiency of numerical
integration [24].

Recently, a partition of unity (PU) based ‘‘FE-Meshfree” 3-node
triangular element with continuous nodal stress (Trig3-CNS) [25]
was proposed for the analysis of mechanical stress of two-
dimensional problems. Subsequently, the Trig3-CNS element was
extended to study free vibration problems [26] and enriched by
crack-tip functions for dealing with crack propagation problems
[27]. By using the same mesh as the classical 3-node triangular ele-
ment (Trig3), Trig3-CNS element is capable of obtaining continu-
ous nodal stress without recourse to stress smoothing operation

http://dx.doi.org/10.1016/j.compstruc.2017.07.001
0045-7949/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: scuhhc@126.com (Y. Yang).

Computers and Structures 191 (2017) 180–192

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2017.07.001&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2017.07.001
mailto:scuhhc@126.com
http://dx.doi.org/10.1016/j.compstruc.2017.07.001
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


during the post-processing process, and to construct high order
global approximation without adding extra nodes or nodal DOFs.
Moreover, it is free from the ‘‘linear dependence” (LD) problem
[12,28] which cripples many of the PU-based methods, such as
the GFEM [12] and the NMM [17]. Here, the ‘‘linear dependence”
(LD) problem means after applying the basic boundary condition
to eliminate the rigid body displacement, the global stiffness
matrix is still singular.

Apart from Trig3-CNS element, two PU-based ‘‘FE-Meshfree” 4-
node quadrilateral elements with continuous nodal stress were
also proposed and applied for two dimensional solid problems
[29–31]. In other front, based on the ‘‘twice-interpolation” proce-
dure, Zheng et al. [24] and Bui et al. [32] also proposed 3-node tri-
angular element and 4-node quadrilateral element with
continuous nodal stress.

From the viewpoint of practical applications, only a few prob-
lems could be simplified into 2D models [33,34]. In most cases,
engineers and researchers have to deal with 3D problems. There-
fore, there are natural demands in developed effective numerical
methods which are capable of accurately simulating 3D problems
[35].

However, solving 3D problems is usually much more difficult
due to the complexity of the geometry. When the FEM is used,
meshing a complicated 3D domain with quality elements can be
quite a difficult task to any analyst. The four-node tetrahedral ele-
ment (Tetr4) is often used for 3D problems, because of its simplic-
ity in formulation and implementation. More importantly, most
commercial FEM software use tetrahedral elements for adaptive
analyses of 3D problems, due to the simple fact that tetrahedral
meshes can be most automatically generated and refined for com-
plicated geometrical domains [36]. The Tetr4 element is thus
clearly superior at least for two counts: simplicity and adaptation.
However, the Tetr4 element also possesses some crucial shortcom-
ings for problems of solid mechanics, such as poor accuracy. In
order to overcome these disadvantages, some new elements were
proposed in [35–37].

Inspired by the advantages of Trig3-CNS element [25] in solving
2D linear elastic problems, in this paper a partition-of-unity (PU)
[28] based 4-node tetrahedral element with continuous nodal
stress (Tetr4-CNS) is developed for linear elastic problems in 3D.
Like Trig3-CNS element, Tetr4-CNS element is also capable of
obtaining continuous nodal stress without smoothing operation,
and constructing high order global approximation without adding
extra nodes or nodal DOFs by simply using the same mesh as the
Tetr4 element. Moreover, it is free from the LD problem.

The outline of this paper is as follows: Section 2 introduces the
partition of unity method (PUM) briefly; Section 3 presents the for-
mulation of Tetr4-CNS element in great detail; Section 4 gives the
basic equations used in linear elastic analysis. Linear dependence
test is carried out in Section 5, while numerical tests about five typ-
ical example problems are carried out in Section 6. Some conclu-
sions are drawn in the last section.

2. Partition of unity method

As mentioned in the introduction section, formulations of the
proposed Tetr4-CNS element are constructed based on the parti-
tion of unity (PU). Therefore, the Tetr4-CNS element can be consid-
ered as a partition of unity method (PUM). In PUM, the global
approximation functions are constructed by using a set of non-
negative weight functions (PU functions) multiplied with local
approximations. According to Ref. [28], the summation of weight
functions should be equal to one, namely,Xn
i¼1

wiðxÞ � 1 ð1Þ

where wiðxÞ is the weight function corresponding to node i, x = (x, y,
z) represents the coordinates of an arbitrary point, n is the total
number of the nodes in the computational domain V. It is noticed
that, in the early version of PUM, the requirement for wiðxÞ P 0 is
discarded, which is slightly different from the standard statements
of the partition of unity theorem [38,17].

The global approximation can then be expressed in the follow-
ing form:

uhðxÞ ¼
Xn
i¼1

wiðxÞuiðxÞ ð2Þ

where ui(x) is the local approximation associated with the node i.
Here, ui(x) can be defined by using the known information about
the boundary value problem. For example, when dealing with crack
problems by XFEM [11] or NMM [17], asymptotic crack-tip func-
tions capable of capturing the singular stress field near the crack
tips are used to define the local approximations of the nodes near
the crack tips. In this study, polynomial functions are employed to
construct the local approximations of the Tetr4-CNS element, since
only linear elastic continuous problems are considered.

3. Formulation of Tetr4-CNS element

The present Tera4-CNS element can be considered as a develop-
ment of the Trig3-CNS [25] element and other ‘‘FE-Meshfree” ele-
ments [39–42]. Before discussing the global approximation of
Tera4-CNS element, the definitions of nodal support and element
support are given firstly.

In defining the support of a given node, such as node i, as shown
in Fig. 1, the first order nodal connectivity which includes the nodes
of all the elements connected to node i is usually considered. Such
a support is called first order nodal support. As can be seen in Fig. 1,
the node set {i12345678} is the first order nodal support of node i.
Similarly, the second order nodal support is defined based on the
second order nodal connectivity by including the nodes of all the ele-
ments connected to the nodes in the first order support. The ele-

ment support, X̂, for a given element, such as i-j-k-l in Fig. 2 is
therefore the union of the four nodal supports corresponding to

nodes i, j, k and l, namely, X̂ ¼ S4
i¼1Xi. Here, Xi is the nodal support

of node i.
Now we consider a tetrahedral element defined by four nodes

{P1P2P3P4} and introduce an arbitrary point P(x) with the coordi-
nates x = (x, y, z). According to Eq. (2), the Tera4-CNS global
approximation, uh(x), in this element can be obtained through

uhðxÞ ¼
X4
i¼1

wiðxÞuiðxÞ ð3Þ

in which, wi(x) and ui(x) are the weight function and the local
approximation associated with node i, respectively.

3.1. Construction of weight functions

The formulation for coordinate transformation is represented as
[1]

x ¼
X4
i¼1

~Niðn;g; fÞxi ð4Þ

y ¼
X4
i¼1

~Niðn;g; fÞyi ð5Þ

z ¼
X4
i¼1

~Niðn;g; fÞzi ð6Þ
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