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a b s t r a c t

Earlier, Isbuga and Regueiro (2011) and Regueiro and Isbuga (2011) presented three dimensional finite
element analysis of finite strain micromorphic isotropic elasticity based on the approach of Eringen
and Suhubi (1964). We present the extension of this work to plasticity, following the formulation of
Regueiro (2009, 2010) and Isbuga (2012). We assume the existence of an intermediate configuration
and apply the separate multiplicative decomposition of the deformation gradient tensor and the
micro-deformation tensor. In this paper, we investigate the effect of elastic length scale together with
the boundary layer effect on micro-displacement tensor field for uniaxial strain and plane strain condi-
tions, involving elastoplasticity with a Drucker-Prager yield function. We emphasize the importance of
the additional degrees of freedom introduced by the micromorphic continuum formulation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Eringen and Suhubi [7] introduced the micromorphic contin-
uum in which each material point is endowed with nine additional
kinematic degrees of freedom (dof) that represents the most gen-
eral case of higher order continua of ‘‘grade one” [5]. Isbuga and
Regueiro [16] and Regueiro and Isbuga [28] were the first to extend
this approach to three dimensional (3D) finite strain finite element
analysis. They demonstrated the formulation and implementation
for a finite strain micromorphic materially linear isotropic elastic-
ity model. One advantage of a micromorphic continuum with
regard to material constitutive modeling is that the additional
degrees of freedom can be used in a multiscale approach to take
into account the underlying micro-structure, as proposed by Reg-
ueiro [25,26], Regueiro and Yan [27]. In that approach, the addi-
tional degrees of freedom will incorporate the contribution of the
lower length scale model, e.g., a discrete element method (DEM)
for particulate materials. The micromorphic continuum accounts
for micro-rotation, micro-shear, and micro-dilation/compaction
of grain clusters in particulate materials, for instance, as opposed
to just particle rotations in a micro-polar theory (see Gardiner
and Tordesillas [9], Peters [24], Walsh and Tordesillas [37] as a
small sampling of the broader literature on micropolar theories
developed for granular media). Another main reason to employ

the micromorphic continuum in multiscale modeling is that all
stress tensors, together with body force vectors and body force
couple tensors, can be expressed in terms of micro-scale tensors
and parameters through integral averaging [5]. Besides the use of
a micromorphic continuum in the context of multiscale modeling,
which is the main interest of the paper, higher order continuum
models because of their inherent nonlocality have been employed
to overcome loss of ellipticity of the governing equations due to
strain softening plasticity for modeling shear band localization,
where the inherent length scale is found to regularize the govern-
ing equations. In addition, the application of higher order contin-
uum models, including micromorphic and micropolar continua,
to different types of material modeling such as concrete, metals,
and soils exist in the literature [1,20,22,36,11,38]. The contribution
of the paper is a finite strain treatment of Drucker Prager plasticity
in the context of Eringen’s general micromorphic theory.

Recent work on finite strain micromorphic continuum-based
inelastic constitutive modeling follows different approaches, and
can be summarized as follows.

Sansour et al. [30] presented an inelastic formulation for the
micromorphic continuum at finite strain by following the previous
work [29] on viscoplasticity. They mentioned the importance of
the additional degrees of freedom, and defined a generalized
deformation gradient, analogous to the micro-element deforma-
tion gradient F 0 in Regueiro [26], for which they applied the multi-
plicative decomposition. This is a departure from the approach we
take in this paper, and also that in Forest and Sievert [8], that the
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multiplicative decomposition is applied separately to the deforma-
tion gradient F and micro-deformation tensor v. By applying the
multiplicative decomposition to the combined micro-element
deformation gradient F 0, rather than separately to F and v, we
would loose the independence of defining constitutive equations
for the various elastic and plastic parts of the deformation tensors.
Thus, for now, we continue with our approach as outlined in Reg-
ueiro [25,26], motivated by Forest and Sievert [8], with the goal of
concurrent multiscale modeling in mind Regueiro and Yan [27]. In
addition, Sansour et al. [30] considered a higher grade (‘‘grade
two”) micromorphic continuum with richer coordinates for the
micro-space. They eventually simplified the generalized coordinate
space to that of the macro-scale, three-dimensional, for computa-
tional implementation reasons. Vernerey et al. [36] proposed a
method for modeling hierarchical materials within the context of
a micromorphic continuum approach. They applied the method
of virtual power (Germain [10]) to derive the weak form of the
momentum equation, and incorporated plasticity. Forest and Siev-
ert [8] constructed a general framework for elastoviscoplastic con-
stitutive modeling of generalized continua, from which we base
our separate multiplicative decomposition of F and v. Dingreville
et al. [2] investigated the wave propagation and dispersion charac-
ter in 1D for elasto-plastic microstructured materials by following
an approach proposed by Mindlin [21]. Researchers noted the
importance of the length scale and microstructural material prop-
erties in overcoming the ill-posedness of the governing partial dif-
ferential equations of wave propagation. Grammenoudis et al. [12]
proposed a theoretical formulation of finite deformation plasticity
with multiplicative decomposition for a micromorphic continuum
coupled with damage. The formulation in Grammenoudis et al.
[12] is most closely related to Regueiro [26], unbeknownst to the
second author (Regueiro) when writing Regueiro [25,26], given
almost the concurrent review and publication of these papers
[12,25,26]. We focus, however, on a finite strain micromorphic
Drucker-Prager plasticity model, and finite element implementa-
tion and results in this paper. Thus, this paper follows our previous
papers on finite strain micromorphic elastoplasticity (Regueiro
[25,26], Isbuga and Regueiro [16], Regueiro and Isbuga [28]) that
involve a large deformation Total Lagrangian three-dimensional
finite element implementation in the opensource C++ code Tahoe
(tahoe.sourceforge.net). We believe we follow more directly
Eringen’s finite strain micromorphic ‘‘grade one” continuum for-
mulation (as opposed to Germain [10], and other works derived
thereof) extending to elastoplasticity using the multiplicative
decomposition of Lee and Liu [19], Lee [18], similar to Gramme-
noudis et al. [12]. Therefore, in this work, we present the extension
of Eringen and Suhubi [7]’s finite strain micromorphic isotropic
elasticity to Drucker-Prager plasticity formulated in the intermedi-
ate configuration �B (Fig. 1) (see Regueiro [26], Isbuga [15] for more
details) to be used in a future multi-scale approach described in
Regueiro [25,26], Regueiro and Yan [27]. We assume two different
yield criteria: (1) a Drucker-Prager (DP) yield function which
involves no micromorphic terms; and (2) a Combined DP-like yield
function (CDP) that involves the combination of the unsymmetric
Cauchy stress tensor and relative stress tensor measures. We apply
the multiplicative decomposition of the deformation gradient F
and micro-deformation tensor v that assumes the existence of an
intermediate configuration in which plastic multipliers are
obtained by solving the linearized form of the DP and CDP yield
functions within a Newton-Raphson nonlinear solution algorithm.
The global consistent tangent is formed by linearizing the constitu-
tive equations, including the dependence of the plastic multipliers
on the displacement vector u and micro-displacement tensor U.

We assume Cartesian coordinates, and use a mix of index nota-
tion and symbolic/direct notation, such that ab ¼ aijbjkei � ek,

where boldface denotes a tensor or vector, and ei is the Cartesian
base vector. Generally, variables in uppercase letters live in the ref-
erence configuration B0 (such as the reference differential volume
dV), variables in uppercase with overbar letters live in the interme-
diate configuration �B (such as the intermediate differential volume
d�V), and variables in lowercase live in the current configuration B
(such as the current differential volume dv). The same applies to
their indices, such that a differential line segment in the current
configuration dxi is related to a differential line segment in the ref-
erence configuration dXI through the deformation gradient:
dxi ¼ FiIdXI (Einstein’s summation convention is assumed; see
Eringen [3], Holzapfel [13]). Subscripts ð�Þ;i; ð�Þ;�I and ð�Þ;I imply par-
tial differentiation with respect to the current, intermediate, and
reference configurations, respectively, assuming Cartesian coordi-
nates for the finite element implementation.

An outline of the remainder of the paper is as follows: Section 2
summarizes the yield functions, constitutive equations, and evolu-
tion equations in the intermediate configuration �B; Section 3 for-
mulates the weak form and finite element equations associated
with the coupled momentum balance equations; Section 4 pre-
sents the numerical examples; and Section 5 provides conclusions.

2. Yield functions, constitutive equations, and evolution
equations

In this section, we summarize the yield functions, constitutive
equations, and evolution equations in the intermediate configura-
tion �B. The constitutive equations for linear isotropic elasticity
were originally proposed by Eringen and Suhubi [7], Suhubi and
Eringen [34] (see Table 1). Regueiro [25,26] presented the constitu-
tive equations, the Clausius-Duhem inequality together with the
derivation of the evolution equations in the intermediate configu-
ration for J2 flow plasticity Regueiro [26], and Drucker-Prager

Fig. 1. Multiplicative decomposition of the deformation gradient F and micro-
deformation tensor v. Geometrical points (‘‘macro-elements”) with centroids C; �C,
and c live in their respective configurations: reference P 2 B0, intermediate �P 2 �B,
and current p 2 B. Material points (‘‘micro-elements”) with centroids C0; �C0 , and c0

also reside in these configurations, offset by relative position vectors N; �N, and n.
Differential line elements and relative position vectors are mapped accordingly:
dx ¼ FdX;dx ¼ Fed�X;d�X ¼ FpdX; n ¼ vN; n ¼ ve �N, and �N ¼ vpN.
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