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a b s t r a c t

The Residual Stress Decomposition Method for Shakedown (RSDM-S) is a new iterative direct method to
estimate the shakedown load in a 2-dimensional (2D) loading domain. It may be implemented to any
existing finite element code, without the need to use a mathematical programming algorithm. An
improved and enhanced RSDM-S is proposed herein. A new convergence criterion is presented that
makes the procedure almost double as fast. At the same time, the procedure is formulated in a
3-dimensional (3D) polyhedral loading domain, consisting of independently varying mechanical and
thermal loads. Using a cyclic loading program that follows the outline of this domain, it is shown that
there is hardly any increase in the computational time when passing from a 2D to a 3D domain.
Finally, keeping the efficiency, using an alternative cyclic loading program, an automation of the
approach to any n-dimensional loading domain is presented. Examples of application are included.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A major task in civil and mechanical engineering is the estima-
tion of the load carrying capacity of a structure or a component
under variable loadings. Structures, like buildings, bridges,
pavements, nuclear reactors, aircraft propulsion engines, etc., dur-
ing their lifetime, are subjected to loads (live load, heavy traffic,
seismic action, internal pressure, thermo-mechanical loads, etc.)
acting in a varying manner. This type of cyclic mechanical and
thermal loading leads often these structures beyond the elastic
limit, resulting to plastic straining.

The asymptotic cyclic behavior of an elastic-perfectly plastic
structure under cyclic loading may be determined by time con-
suming incremental time-stepping calculations. Direct methods,
alternatively, have a big computational advantage as they attempt
to find directly this cyclic asymptotic state. Such states are guaran-
teed for structures made of stable material [1].

There are a few direct methods, proposed in the literature,
among which one may mention the work presented in [2,3] which
forms a sequence of elastic solutions using as a modified loading an
update of initial strains computed through an update of internal
variables. This method is the basis of a recently presented direct

method [4]. Approaches based also on a series of elastic analyses
produced by modifying, iteratively, the modulus of elasticity, form
another class of direct methods. Among them one should mention
the Linear Matching Method (LMM) [5,6]. An incremental-iterative
procedure, that appears to work well in cases of alternative plastic-
ity but not for cases of ratcheting, was proposed in [7] and has been
implemented in a commercial code. Very recently, a numerical
scheme is presented, based on the conditions of the asymptotic
state linked with a specific trial and projection operation, to esti-
mate the plastic strain increments [8].

A direct method, which is known as the Residual Stress Decom-
position Method (RSDM), was presented in [9,10]. The method can
predict the long-term cyclic state, either it is shakedown or reverse
plasticity or incremental collapse, of an elastic perfectly-plastic
structure when subjected to a given cyclic loading history. The
approach is based on physical arguments that have to do with
the expected cyclic nature of the residual stresses. The residual
stresses are decomposed into Fourier series with respect to time
and the coefficients of these series are calculated iteratively by sat-
isfying equilibrium and compatibility at time points inside the
cycle.

When, on the other hand, the loading history is unknown, for a
structure to be safe and serviceable, safety margins, e.g.
shakedown limits, have to be estimated so that it fails neither
due to incremental collapse (often referred to as ratcheting) nor
due to reverse plasticity that leads to low cycle fatigue. A direct

http://dx.doi.org/10.1016/j.compstruc.2017.08.008
0045-7949/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: kvspilio@central.ntua.gr (K.V. Spiliopoulos).

Computers and Structures 193 (2017) 155–171

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2017.08.008&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2017.08.008
mailto:kvspilio@central.ntua.gr
http://dx.doi.org/10.1016/j.compstruc.2017.08.008
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


shakedown analysis is the only way to provide this information.
For small displacements and elastic-perfectly plastic solids the
shakedown analysis is based on two different approaches, the
lower bound [11] or the upper bound [12] shakedown theorems.
The extensions of these two theorems to cover thermal loadings
were given in [13,14], respectively.

Attempts to consider geometric nonlinearities appeared in the
literature (e.g. [15,16]). Conditions to extend the static theorem
to elastic-perfectly plastic cracked bodies have been presented in
[17]. Limited kinematic (e.g. [18]) and nonlinear kinematic harden-
ing has been also addressed (e.g. [19]). Recent developments on the
subject have appeared in [20,21] in the framework of the bipoten-
tial theory. Non-associated plasticity has also been discussed (e.g.
[22,23]). Polizzotto, has discussed the shakedown theorems in
the context of gradient plasticity theory [24,25].

The two shakedown theorems form the basis of the big majority
of the existing numerical procedures to estimate the shakedown
load. They are formulated as mathematical programming (MP)
problems whose scope is to find the minimum or maximum value
of an objective function (normally the loading factor) which is sub-
jected to various static or kinematic constraints. Linearization,
mainly of the yield surface, has led to some early solutions using
linear programming algorithms (e.g. [26,27]). More recent contri-
butions have appeared along the same line (e.g. [28–30]). If the
constraints are not linearized and are kept in their original form
(nonlinear), the problem can be formulated as a nonlinear (NLP)
programming problem. The discretization of the continuum by a
large number of finite elements and the big number of constraints
often lead to the solution of large size optimization problems. Var-
ious numerical techniques have been developed to solve these
problems. Among these one could mention the reduced basis tech-
nique [19,31] or algorithms based on Newton iterations [32]. The
evolution of the interior point algorithms (IPM) to solve large scale
optimization problems led to the extensive formulation and solu-
tion of limit and shakedown analysis problems using these algo-
rithms or related techniques (e.g. [33–43]).

One may also find some alternative approaches in the litera-
ture for the evaluation of the shakedown load. Such an approach
is based on the work presented in [2], whose application using
the finite element method (FEM) may be found in subsequent
publications (e.g. [44]). Reverse plasticity and collapse load solu-
tions have been shown to provide upper bounds to the shake-
down load [45]. The LMM has also been used to estimate the
shakedown load of a structure (e.g. [5,46]). In [47] a solution
is proposed, based on the LMM, to estimate a possible shake-
down load when friction slip occurs between a rigid surface in
contact with an elastic body, subjected to cyclic loading. A quite
involved strategy, equivalent to a fictitious incremental strain
driven elastoplastic problem, and applied for a von Mises type
of material, has been presented in [48]. The numerical perfor-
mance of this approach is compared against the IPMs in [49].
An analogous methodology, involving more general yield criteria,
was proposed in [50].

A numerical approach, which was called RSDM-S has appeared
recently [51–53]. It may be used for the evaluation of the shake-
down load of elastic-perfectly plastic structural elements under
cyclic thermo-mechanical loading. The basis of the method, both
from the conceptual as well as the implementation points of view,
is the RSDM. Since, now, only the variation intervals of the loads
are known, the problem is converted to an equivalent prescribed
loading problem, drawing any time curve crossing these intervals.
The RSDM-S consists of two different iteration loops, one inside the
other and has been formulated for two loads that may vary either
proportionally or independently. Starting from a high load factor, a
descending sequence of loading factors is established and the
shakedown load factor is calculated when the iterative procedure

converges to a solution where the constant term is the only non-
zero term of the Fourier series.

The efficiency of the RSDM-S and RSDM to provide shakedown
boundaries as well as to unveil unsafe conditions in 2-dimensional
loading domains was recently demonstrated in [54].

In the present work, the RSDM-S method is enhanced by a dif-
ferent convergence criterion, inside the inner loop, that makes the
method run faster, even more than 40%. Moreover, the method is
formulated for a 3-dimensional loading domain consisting of two
mechanical and a thermal load. It is shown that the extension from
a 2-D to a 3-D loading domain hardly influences the amount of
computational time to estimate the shakedown load factor as
opposed to the IPM algorithms where the time is shown to double
[55]. Finally, it is shown how the method may be automated to
cater for any n-dimensional loading domain.

The paper is organized in the following way: In Section 2 a proof
of an existing theorem makes possible to realize the arbitrariness
of the cyclic loading program that passes through the vertices of
the convex loading domain; in Section 3 the enhanced RSDM-S
procedure, in the form of a flow chart, with the new convergence
criterion, formulated in a 3-D thermomechanical loading domain
and assuming a von Mises yield criterion, is presented. The signif-
icant faster convergence of the enhanced approach is demon-
strated through examples of 2-D loading domains in Section 4. In
Section 5 the method is applied to a 3-D polyhedral loading
domain using a cyclic loading program that passes consecutively
from all its vertices. Finally, in Section 6 an alternative cyclic load-
ing path combined with a combinatorial algorithm shows how the
whole procedure may be automated for an n-dimensional domain.

2. Theoretical considerations

Let us suppose a structure is subjected to independently varying
cyclic loads that have the same period T. Although the theory may
be applied to any number of loads, for reasons of visualization, a
maximum of three loading (3-D) domain that consists of two
mechanical and a thermal load will be demonstrated (Fig. 1(a)).
Such a cyclic loading may be represented in the loading space
as a closed loop (Fig. 1(b)). Let us further suppose that each load
has a minimum and a maximum value of variation. Without any
loss of generality, the minimum of all the loads will be considered
zero. The maximum of each of the loads, denoted by starred quan-
tities, together with the origin may define a convex (hyper-) cuboid
(Fig. 1(b)). Thus, the cyclic loading will be contained inside this
cuboid.

In response to this loading the structure that consists of an
elastic-perfectly plastic material will develop a stress that may
be decomposed into two parts; an elastic part assuming purely
elastic material behavior and a residual stress part to account for
plasticity:

rðsÞ ¼ relðsÞ þ qðsÞ ð1Þ
where s ¼ t=T denotes a time point inside the cycle.

The structure is discretized, following a standard procedure,
into a finite number of elements that are interconnected at a dis-
crete number of nodal points situated on their boundaries. Bold
letters are herein used for vectors and matrices. The stress and
strain vectors are evaluated at the Gauss points (GPs) of the finite
elements (FE).

The strain rates, on the other hand, may be decomposed into the
following parts:

_eðsÞ ¼ _eelðsÞ þ _ehðsÞ þ _eelr ðsÞ þ _eplðsÞ ð2Þ
where _eelðsÞ is the elastic straining due to both the mechanical and
the thermal loading [52]. _ehðsÞ denotes thermal strain rates that
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