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A variety of physical problems may be expressed using the advection-diffusion-reaction (ADR) equation
that encompasses transport processes into a porous or nonporous material. Finding a theoretical solution
to the ADR equation is difficult with time-dependent nonlinear coefficients, complicated geometries, gen-
eral initial value and/or boundary conditions. In this paper a meshless model is developed by adapting the
generalised reproducing kernel particle method to the strong and weak integral forms of ADR equation.
Moreover, mixed-type boundary conditions are directly enforced via generalising the corrected colloca-
tion method. The model is validated using existing analytical solutions and shown to be both accurate
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1. Introduction

The continuity equation can be used to describe transport of
quantities such as mass, energy and momentum. It is normally a
homogenous partial differential equation (PDE) of second order
but can also be, more generally, a non-homogeneous PDE with a
source term. The source term allows expression of the transport
of quantities that may not necessarily be conserved as they can
be generated or consumed in a reaction. A variety of physical prob-
lems in engineering and science may be expressed using the gen-
eral form of the continuity equation; the advection-diffusion-
reaction (ADR) equation is a good and practical example. The
ADR equation covers the general case of the transport phe-
nomenon including heat transfer and transport of mass and chem-
icals into a porous or a nonporous media. As a point of interest for
researchers in the field of concrete durability, the transport of
moisture [1-3], CO, [1] and chloride ions [2,3] into concrete can
be described by this equation. Carbonation or chloride contamina-
tion in concrete may result in the corrosion of steel reinforcement
that affects the performance and the expected service life of rein-
forced concrete structures.

Finding a theoretical solution of the ADR equation becomes dif-
ficult when the problem has time-dependent and nonlinear coeffi-
cients, 2D or 3D domain with complicated geometry, and general
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initial value and/or boundary conditions (BCs). Numerical simula-
tion is the only feasible way to solve such problems [4]. The Vari-
ational approach and the weighted residual method (WRM) are
two distinct numerical procedures for deriving approximations of
the governing equation and the associated BCs [5,6]. The finite dif-
ference method (FDM), the finite element method (FEM), the finite
volume method (FVM) and the boundary element method (BEM)
are among the commonly used variants of WRMs for solving the
ADR equation. All these methods are based on local interpolation
schemes and need mesh for modelling the problem [7]. There exist
various review papers on summary and comparison of some com-
monly used finite difference and finite element methods for solv-
ing the advection-diffusion (AD) and ADR equations [8,9]. The
FDM as a traditional strong formal numerical method has defi-
ciency in dealing with complicated geometry [4] or using non-
uniform particle distribution [10]. The FDM also shows lack of
accuracy in solving hyperbolic PDEs such as those obtained in
advection-dominated problems [7]. The FEM has been successfully
established and conveniently applied to a variety of problems in
engineering. Nevertheless, it has drawbacks in solving nonlinear
diffusion problems with non-homogeneous coefficients because
of unavoidable mesh sensitivity and time costs of adaptive mesh
generation [4].

During the last three decades, considerable efforts have been
devoted to develop mesh free (MFree) methods to overcome cost
of the mesh generation, connectivity, dependency and sensitivity
problems in mesh-based methods [11]. So far, various meshless
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methods have been introduced in the literature and there exist
review papers on summary and comparison of some commonly
used meshless methods [12,13]. Lucy [14] and Gingold and Mon-
aghan [15] introduced one of the first MFree methods, the
smoothed particle hydrodynamics (SPH), based on kernel approxi-
mations. SPH suffers from a lack of consistency that can lead to
poor accuracy and tensile instability. The latter is asa result of
combination of an Eulerian kernel with a Lagrangian formulation
and it can be avoided by substituting a Lagrangian kernel that is
preferable in modelling solids and computational costs [16]. Liu
et al. introduced the meshless reproducing kernel particle method
(RKPM) that provides certain degree of consistency for the finite
integral approximation [17]. The RKPM solution and its derivatives
can have any desired order of continuity by adopting a window
function with adjustable order of continuity [17,18]. RKPM not
only maintains the free Lagrange concept as the most attractive
feature of the SPH method, but also restores the first order com-
pleteness and improves the approximation near boundaries by
introducing a continuous correction function to the original kernel
function of the SPH approach [16,17].

Some meshless methods have been successfully applied to dif-
fusion and AD equations. To give some examples, one can refer to
the solution of unsteady-state heat conduction problem with the
SPH method [19], 2D and 3D heat conduction using the element
free Galerkin method (EFGM) [20], and also the solution of the
AD equation using the finite point method (FPM) [21], the mesh-
less local Petrov-Galerkin method (MLPG) [22] and the radial basis
functions (RBF) [7]. Moreover, Liu and Chen [23] applied the RKPM
to the steady-state AD equation. Hashemian and Shodja [24] later
solved the unsteady Burgers’ equation, asa special case of AD
equation. The RKPM was also recently used to improve the perfor-
mance of the triangular B-splines for solving PDEs [25].

Despite the given merits, the enforcement of BCs in MFree
methods is usually a source of difficulty because the corresponding
shape functions do not necessarily hold the Kronecker delta prop-
erty [17,26-28]. To remedy this, a variety of methods have been
introduced; these are classified into two main groups [29]: meth-
ods based on a modification of the weak form such as the Lagrange
multiplier method [30], the penalty method [31,32] and the
Nitsche’s method [33,34], and methods that can be interpreted
as a modification of interpolation shape functions [26,35]. Wagner
and Liu [27] proposed the corrected collocation method that fully
restores the convergence rate decrease as a result of using the inva-
lid traditional collocation method. Wu and Plesha [28] showed that
the corrected collocation method is identical to the generally
accepted reduced Lagrange multipliers method.

Shodja and Hashemian [36] generalised the corrected collocation
method to enforce the gradient type of constraints; they presented
the gradient RKPM by incorporating first-order derivatives in the
reproduction formula [36,37]. The idea was further extended in
[38] that resulted in the formulation of MLS in a way that the deriva-
tives of the field variable with any desired order are incorporated in
the formulation; the generalised RKPM was introduced as discre-
tised form of the generalised MLS. Nodal enforcement of
derivative-type BCs is the significant advantage of the gradient/gen-
eralised RKPM over the conventional RKPM in which the enforce-
ment of such BCs can be cumbersome and inaccurate [36-38].

Previous numerical studies on ADR equation generally solved
the problem in weak form and enforced mixed-type BCs (if consid-
ered) either implicitly through weak formulation or indirectly
using techniques such as the penalty method or the Lagrange mul-
tipliers. In this paper the transient ADR equation is formulated in
both strong and weak forms and is solved numerically by applying
the Bubnov-Galerkin WRM. A new implementation of the meshless
generalised RKPM with a continuous Lagrangian kernel is consid-
ered for spatial discretisation of the weighted integrals. This

method not only holds the key features of the conventional RKPM
(such as p-refinement), but also incorporates derivatives of the
field variable (up to any desired order) as independent degrees of
freedom (DOFs). In this study, the latter feature is utilised to pre-
cisely enforce any mixed-type BC or its special cases (i.e. natural
and essential BCs) in a direct manner. Furthermore, sensitivity
analyses to the influencing parameters such as Peclet number, sur-
face diffusivity and reaction rates are undertaken to provide insight
to the nature of the problem.

The outline of the paper is as follows. In next section, the gen-
eral n-dimensional formulation of the unsteady ADR equation
and its associated BCs is presented. The generalised RKPM that is
utilised for spatial discretisation is briefly reviewed in Section 3.
The numerical solution of the governing equation in both strong
and weak forms is explained in Section 4 and the proposed proce-
dure for direct enforcement of different types of BCs is detailed in
Section 5. A number of numerical examples are given in Section 6
to verify the accuracy and illustrate the capabilities of the new
technique, while Section 7 concludes the paper.

2. General formulation

The unsteady advection-diffusion-reaction equation, as the
most general mass transport equation, can be expressed in the
form of the general continuity equation as:

o
¢ 5
where ¢ is the field variable, o, is the potential coefficient, ¢ is the
time of exposure, q is the flux vector, and finally Q, is the source
term indicating the rate for consumption or production of the field
variable in the corresponding reactions. In general, flux of the field
variable is the combination of diffusive and advective fluxes as the
main mechanisms for the transport phenomenon; thereby, the flux
vector can be written as:

q=-Dy,V¢ + B9, (2)

where D, is the matrix of diffusion coefficients and p is the vector of
advective velocities in different dimensions of the general n-
dimensional space. For example, D, and B, in two dimensional
Cartesian coordinates, are:
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By back substitution of Eq. (2) for flux expression into governing
Eq. (1) and expanding the advection term, one obtains:

AG) = 0,20 7.D,Y9) + (Vo).B+ (VB9 — Q =0 )

The first possible BC of this problem is the essential BC as the set
of prescribed values () for the field variable on T',. The second
possible BC is the set of prescribed flux (g,) for the normal flux
of the field variable (g,) on I'y. The possible BCs of this problem
are thus expressed by:

d)*(}):O ZF¢
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The normal flux of the field variable is equal to q.n where n is
the unit normal vector of I'y. The flux BC is obtainable by equalis-
ing the flux of the field variable at the surface of the material with
that in the surface boundary layer (SBL) surrounding the material.
The flux BC has been commonly expressed by the following
equation:

—(DyV¢).n = Jsn(ds — ¢), (6)
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