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a b s t r a c t

The advantages of using the generalised-alpha scheme for first-order systems for computing the numer-
ical solutions of second-order equations encountered in structural dynamics are presented. The govern-
ing equations are rewritten so that the second-order equations can be solved directly without having to
convert them into state-space. The stability, accuracy, dissipation and dispersion characteristics of the
scheme are discussed. It is proved through spectral analysis that the proposed scheme has improved dis-
sipation properties when compared with the standard generalised-alpha scheme for second-order equa-
tions. It is also proved that the proposed scheme does not suffer from overshoot. Towards demonstrating
the application to practical problems, proposed scheme is applied to the benchmark example of three
degrees of freedom stiff-flexible spring-mass system, two-dimensional Howe truss model, and elastic
pendulum problem discretised with non-linear truss finite elements.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Obtaining stable and accurate solutions of second-order
dynamical systems encountered in science and engineering has
been one of the important areas of research on numerical schemes
for initial value problems (IVPs). In literature, there are several
time integration schemes for solving structural dynamic problems.
Several classifications exist for such schemes: implicit or explicit
and single-step or multi-step being the most prominent ones. The
detailed discussion of such schemes is beyond the scope of this
paper and any standard book on numerical schemes for initial
value problems, e.g. [1–7], may be consulted for this purpose.

Implicit schemes generally possess better stability characteris-
tics than explicit schemes. An implicit scheme allows use of large
steps for obtaining numerical solutions, hence, such schemes
require less time and effort. However, it is now an established fact
that use of large time steps, in implicit schemes, results in undesir-
able numerical dissipation in the low-frequency range. On the
other hand, for structural dynamics problems discretised with
finite elements, it is advantageous to be able to control the amount
of numerical damping so that adverse effects of spurious higher-
frequency modes on the numerical solution can be avoided.
Therefore, a time integration scheme with controllable numerical

damping for high-frequency modes and at the same time with less
numerical dissipation in the low-frequency range is desirable.
Following Hilber and Hughes [7,8], a competitive numerical
scheme for structural dynamic problems should possess the
following important characteristics:

1. Unconditional stability when applied to a linear problem.
2. No more than one set of implicit equations should have to be

solved at each time step.
3. Second-order accuracy.
4. Controllable algorithmic dissipation in the higher modes.
5. Self-starting.
6. The scheme should not suffer from overshoot behaviour.

A considerable amount of research has gone into developing
implicit schemes which possess the above-listed attributes.
Newmark-b scheme [9], Wilson-h scheme [10], HHT-a scheme
[11], Collocation scheme [8], WBZ-a scheme [12], HP-h1 scheme
[13], CH-a scheme [14] and G-a scheme [15] are few such schemes
which satisfy some or all of the above listed criteria. Though all
these schemes are unconditionally stable, implicit, single-step
and second-order in nature, their differences are in the amount
of numerical dissipation and whether or not they suffer from over-
shoot. HHT-a, CH-a and WBZ-a schemes have been proven to suf-
fer from overshooting, see [15] and references therein. Erlicher
et al. [16] have proven the overshoot behaviour of CH-a scheme
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in the context of non-linear dynamic problems. KaiPing [15] has
improved upon CH-a scheme and devised a new family of
generalised-a schemes without overshoot. Though NOHHT-a and
NOWBZ-a schemes, proposed by [15], are without overshoot and
have better dissipation properties when compared with their
counterparts with overshoot, the amount of numerical dissipation
of NOCH-a remained exactly same as that of the CH-a scheme. On
the similar lines, Kuhl and Crisfield [17] developed energy conserv-
ing generalised energy-momentum methods based on CH-a
scheme.

It is important to note that all the schemes listed above are
single-step schemes for second-order IVPs. To the knowledge of
the authors, there are only a few direct multi-step schemes for
second-order IVPs. Two-step composite scheme by Bathe and Baig
[18] and the three-step scheme by Wen et al. [19] are two such
multi-step schemes for structural dynamic problems. We refer to
a recent article by Zhang et al. [20] for a comprehensive numerical
analysis of such composite schemes. Though these multi-step
schemes do not contain any adjustable parameter, their main dis-
advantage is that for the same time step size, they are computa-
tionally expensive when compared with single-step schemes. For
example, for a linear problem, and for a given time step, the com-
putational cost of Bathe’s two-step scheme is twice that of a single-
step scheme; and for the three-step scheme by Wen et al. [19] the
computational cost is three times that of a single-step scheme. In
addition, the task of book-keeping and storing variables for inter-
mediate steps in multi-step schemes adds to unnecessary compu-
tational overheads. Furthermore, the cost and complexity of the
algorithm of multi-step schemes increase many folds for non-
linear problems.

In this paper, we propose to use the generalised-a scheme for
the first-order dynamic systems, proposed by Jansen et al. [21]
and referred as JWH-a from this point onwards, for obtaining the
numerical solutions of structural dynamic problems. Recently, this
scheme has been applied to nearly incompressible elasticity by
Rossi et al. [22] and viscoelasticity by Zeng et al. [23]. This work
is motivated by the need for a consistent time integration scheme
for fluid-structure interaction (FSI) problems. CH-a and JWH-a
schemes have been extensively used as time integration schemes
for fluid and solid sub-problems, respectively, in numerical
schemes for coupled fluid-structure interaction, see [24–30]. Inves-
tigation of time integration schemes for fluids [24] showed the
excellent performance of the JWH-a scheme. Dettmer and Perić
[31] used CH-a and JWH-a schemes, respectively, for fluid and
solid sub-solvers to obtain second order accurate unconditionally
stable weakly coupled solution scheme for FSI with small to mod-
erate added mass effects. All of these motivate the development of
the unified framework in which a single time integration scheme is
used for both fluid and solid sub-problems.

The outline of the paper is as follows. The governing equations
and proposed scheme are presented in Section 2. Stability and
accuracy analysis are carried out in Section 3. Dissipation and dis-
persion characteristics of the scheme are studied in Section 4. In
Section 5, it is proved that the proposed scheme does not suffer
from overshoot behaviour. Finally, the algorithm is applied to three
multi-degree of freedom (MDOF) examples in Section 6 and the
performance of the proposed scheme is compared against CH-a
and Bathe’s schemes. Conclusions are drawn in Section 7.

2. Governing equations and the proposed time integration
scheme

The governing equation for the general linear structural
dynamic problem can be written in matrix-vector form as,

M d
��
þC d

�
þKd ¼F ð1Þ

dðt ¼ 0Þ ¼d0 ð2Þ
d
�
ðt ¼ 0Þ ¼d

�
0 ð3Þ

where M;C and K are the mass, damping and stiffness matrices,
respectively; d is the vector of displacements (including rotational

degree of freedom) and d
�
¼ dd=dt;d

��
¼ d2d=dt2 are the velocity

and acceleration vectors; F is the vector of external nodal forces;

d0 and d
�
0 are the initial displacement and velocity, respectively.

In order for the formulation to be consistent and balance total
energy, the initial acceleration should be computed as,

d
��
0 ¼M�1 Fðt ¼ 0Þ � Cd

�
0 � Kd0

� �
ð4Þ

In order to apply the JWH-a scheme, the second-order equation
Eq. (1) is first converted into a system of first-order equations. By

introducing an auxiliary variable v ¼ d
�
, the equivalent first-order

system can be written in the matrix form as,
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�
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By applying the JWH-a scheme to Eq. (5), the following first-
order system is obtained.
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with,
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For convenience, Eqs. (12) and (13) are rewritten as,

d
�
nþ1 ¼ 1

cDt
dnþ1 � dn½ � þ c� 1

c
d
�
n ð14Þ

v
�
nþ1 ¼ 1
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c
v
�
n ð15Þ

Now, using the Eqs. (7)–(13), the first-order matrix system Eq.

(6) can be solved for fdnþ1 vnþ1gT . However, this is not a wise
choice as this would require solving a matrix systemwhich is twice
as large as the original one. Even though the resulting overhead
might be insignificant for small problems, the cost would increase
substantially for large problems, especially when the matrix sys-
tem needs to be solved at every iteration of every time step for a
non-linear problem. Therefore, in the present work, we rewrite
the Eq. (6) so that we only need to solve a matrix system that is
exactly the same size as that of the original system.

A close observation of Eq. (6) reveals that, its first equation can
be simplified to an equation involving only vectors. Accordingly,
we get,

d
�
nþam ¼ vnþaf ð16Þ
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