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a b s t r a c t

A comparative study of three composite implicit schemes including the Bathe scheme (Bathe and Baig,
2005), the TTBDF scheme (Chandra et al., 2015) and the Wen scheme (Wen et al., 2017) is conducted
in this paper. The stability and accuracy characteristics of these schemes are studied and compared by
analytical and numerical simulation analysis. In the solution of wave propagation problems, a demon-
strative dispersion analysis is given and problems are solved to illustrate the capabilities of the schemes
for the solution of wave propagation problems as well as the numerical dissipation characteristics of the
schemes. The nonlinear dynamic behavior of the Wen scheme is studied by considering commonly used
nonlinear dynamic problems where the nonlinear performance of the scheme is exclusively compared
with the Bathe and TTBDF schemes. The priority ranks of three presented composite schemes for different
types of dynamic problems are obtained by theoretical and numerical analysis.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last several decades, much research effort has been
devoted to develop step-by-step time integration schemes for tran-
sient dynamic problems. Generally, there are two categories of
schemes: implicit scheme and explicit scheme [1–4]. The implicit
scheme is a good option for a practical use because it can give a
stable solution with large time step, and the accuracy of numerical
solutions can meet the usual requirements in engineering. A large
amount of implicit schemes have been presented, see articles [5–7]
and the references therein, and the representative implicit
schemes such as the Newmark scheme [8], the HHT-a scheme
[9], the generalized-a scheme [10] and the GSSS scheme [11] are
widely used in actual engineering applications.

For step-by-step implicit schemes, numerical dissipation is
important for dynamic analysis where numerical dissipation can
filter out or to reduce the spurious, non-physical oscillations of
high frequency modes induced by spatial discretization. In partic-
ular, for strong nonlinear problems, high-frequency numerical
dissipation often improves the convergence of iterative equation
solvers.

However, most of dissipative schemes have been developed in
the context of linear elastodynamics [8–14], for the nonlinear anal-
ysis, it is observed that these schemes often fail to provide reliable
high-frequency dissipation in the nonlinear analysis [15–17].
Therefore, in recent years, some composite schemes are developed
to obtain more reliable numerical dissipation for linear and nonlin-
ear problems [18–25], the intrinsic idea of these schemes is the use
of sub-steps within one time step where both the non-dissipative
and dissipative schemes are combined to obtain desirable calcula-
tion accuracy in low-frequency modes and numerical dissipation in
high-frequency modes. For instance, the well-known composite
time integration scheme proposed by Bathe and collaborators
[18] is a simple combination of the non-dissipative trapezoidal rule
and dissipative three-point Euler scheme. Although, this scheme,
referred to as the Bathe scheme, requires roughly twice the compu-
tational cost as the trapezoidal rule per time step, shows better
performance than the trapezoidal rule in nonlinear problems
[26,27]. By use of the sub-step strategy similar to the Bathe
scheme, a generalized robust composite time integration scheme
is proposed by Dong [24] for nonlinear elastodynamics to over-
come the loss of unconditional stability of the current time integra-
tion schemes in the nonlinear regime. To improve the numerical
dissipation characteristics, the sub-step strategy from Bathe
[26,27] and Dong [24] were extended to develop a new composite
scheme which consists of three sub-steps where the trapezoidal
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rule is used to perform the first and second sub-steps, while the
backward different formula is adopted to perform the third sub-
steps [21]. For the rest of this paper, this new sub-step scheme will
be referred to as the TTBDF scheme. Inspired by the work of Bathe
and Baig [18], Wen et al. [22] have proposed a three sub-step
scheme where the trapezoidal rule and the Euler backward for-
mula is adopted for first and second sub-steps, respectively, but,
for the third sub-step, the formula for the Houbolt scheme is
adopted. This scheme, referred to as the Wen scheme, shows desir-
able characteristics in calculation accuracy and numerical
dissipation.

A significant application of direct integration schemes is the
wave propagation problem. In the solution of transient wave prop-
agations, the errors stem from the spatial and temporal discretiza-
tion which appear together and affect each other [28–32]. For
temporal discretization, numerical dissipation is often used to fil-
ter out spurious oscillations, especially for high wave numbers.
The introduced numerical dissipation should be large enough to
suppress the high frequency spurious waves, and meanwhile,
retain good accuracy for the low frequency waves. Bathe and
coworkers have studied the dispersion properties of the Bathe
scheme in the solution of wave propagation problems under differ-
ent spatial discretization frameworks [32,33]. The Bathe scheme
illustrates better performance than the trapezoidal rule in the
wave propagation problems. In this paper, following the original
work by Wen et al. [22], the dispersion properties of the Wen
scheme are first investigated by considering the representative
nonlinear dynamic problem and benchmark wave propagation
problems.

The main objective of this paper is to study the nonlinear
dynamics and wave propagation performance of the composite
Wen and TTBDF schemes as well as the basic characteristics for
structural dynamics, meanwhile, a comparative study of three dis-
sipative composite schemes including the Bathe scheme, TTBDF
scheme and Wen scheme is conducted. In the following, we intro-
duce the considered composite schemes in Section 2 where the
basic formulations of the presented composite schemes are given
as well as the corresponding suggested algorithmic parameters.
In Section 3, basic properties including stability and accuracy are
illustrated and discussed. In Section 4, the dispersion errors of
the composite schemes in the solution of 1D and 2D elastic wave
propagations are exclusively studied under the same finite element
discretization framework. Subsequently, in Section 5, several sim-
ulations are considered to comprehensively compare the perfor-
mance of three composite schemes in linear and nonlinear
dynamic problems and wave propagation problems.

2. The presented implicit time integration schemes

In the following analysis, the governing equation of motion for
structural dynamics can be represented by

M€uþ C _uþ Ku ¼ f ð1Þ
where u, _u and €u are the nodal physical variables vector and its first
and second derivative vectors with respect to time variable t. M, C
and K are the mass, damping and stiffness matrices, respectively.
For nonlinear cases, C and K can be, respectively, obtained by

C ¼ @f d
@ _u and K ¼ @f s

@u , where f d and f s are the nodal damping force
and the elastic force vectors corresponding to the element internal
stresses, respectively.

The considered time domain ½a; b� is divided by uniform time
increment Dt into n sub time intervals ½ti; tiþ1�, where
i ¼ 0;1;2; . . . ;n; Dt ¼ b�a

n .
The initial conditions for Eq. (1) are

uðt0Þ ¼ d0; _uðt0Þ ¼ v0 ð2Þ
Another condition satisfying Eq. (1) is obtained as

€uðt0Þ ¼ M�1ðf � Kd0 � Cv0Þ ð3Þ
For the presented composite time integration schemes, the

equation of motion is satisfied at discrete time t þ rDt and t þ Dt
within time interval Dt, where r 2 ð0;1Þ.

2.1. The Bathe scheme

In this composite scheme [26,27], the complete time step Dt is
subdivided into two sub-steps. For the first sub-step the trape-
zoidal rule is used; for the second sub-step the 3-point Euler back-
ward scheme is employed with the resulting equations.

The basic formulation for the first sub-step is expressed as

_utþrDt ¼ _ut þ 1
2
rDtð€ut þ €utþrDtÞ ð4Þ

utþrDt ¼ ut þ 1
2
rDtð _ut þ _utþrDtÞ ð5Þ

M€utþrDt þ C _utþrDt þ KutþrDt ¼ f tþrDt ð6Þ
where ut , _ut and €ut are the approximations of exact solution uðtÞ,
_uðtÞ and €uðtÞ, respectively. utþrDt , _utþrDt and €utþrDt are the approxima-
tions of exact solution uðt þ rDtÞ, _uðt þ rDtÞ and €uðt þ rDtÞ. f tþrDt is
directly given by f ðt þ rDtÞ.

The basic formulation for the second sub-step is as follows:

_utþDt ¼ c1ut þ c2utþrDt þ c3utþDt ð7Þ

€utþDt ¼ c1 _ut þ c2 _utþrDt þ c3 _utþDt ð8Þ

M€utþDt þ C _utþDt þ KutþDt ¼ f tþDt ð9Þ
where c1 ¼ 1�r

rDt , c2 ¼ �1
ð1�rÞrDt, c3 ¼ 2�r

ð1�rÞDt. utþDt , _utþDt and €utþDt are the

approximations of exact solution uðt þ DtÞ, _uðt þ DtÞ and €uðt þ DtÞ.
This composite scheme is desirable for nonlinear problems, and
attractive because only the usual symmetric stiffness, mass and
damping matrices are used, and no additional unknown variables
(i.e., Lagrange multipliers) need to be solved for. This composite
scheme is available in the ADINA program [18]. Here the splitting
parameter r ¼ 1=2 is selected with due consideration of computa-
tion efficiency and coding implementation [18].

2.2. The TTBDF scheme

The TTBDF scheme is formed by using the trapezoidal rule for
the first and second sub steps and a BDF-like algorithm in the third
sub step [21], the time step for each sub step is dt ¼ Dt=3. The basic
formulations for the first and second sub steps, respectively, are

utþDt
3
¼ ut þ Dt

6
_ut þ _utþDt

3

� �
ð10Þ

_utþDt
3
¼ _ut þ Dt

6
€ut þ €utþDt

3

� �
ð11Þ

M€utþDt
3
þ C _utþDt

3
þ KutþDt

3
¼ f tþDt

3
ð12Þ

and

utþ2Dt
3
¼ utþDt

3
þ Dt

6
_utþDt

3
þ _utþ2Dt

3

� �
ð13Þ

_utþ2Dt
3
¼ _utþDt

3
þ Dt

6
€utþDt

3
þ €utþ2Dt

3

� �
ð14Þ
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