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a b s t r a c t

This article presents an energy-momentum integration scheme for the nonlinear dynamic analysis of
planar Euler-Bernoulli beams. The co-rotational approach is adopted to describe the kinematics of the
beam and Hermitian functions are used to interpolate the local transverse displacements. In this paper,
the same kinematic description is used to derive both the elastic and the inertia terms. The classical mid-
point rule is used to integrate the dynamic equations. The central idea, to ensure energy and momenta
conservation, is to apply the classical midpoint rule to both the kinematic and the strain quantities.
This idea, developed by one of the authors in previous work, is applied here in the context of the
co-rotational formulation to the first time. By doing so, we circumvent the nonlinear geometric equations
relating the displacement to the strain which is the origin of many numerical difficulties. It is rigorously
shown that the proposed method conserves the total energy of the system and, in absence of external
loads, the linear and angular momenta remain constant. The accuracy and stability of the proposed algo-
rithm, especially in long term dynamics with a very large number of time steps, is assessed through four
numerical examples.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamics of slender beams is still a very active research field
especially when it comes to large deformations and displacements.
Flexible beams are used in many applications, for instance large
deployable space structures, aircrafts and wind turbines propellers,
offshore platforms. These structures undergo large displacements
and rotations and in some cases moderate-to-large strains. Several
approaches are available to model the dynamics of geometrically
flexible nonlinear beams. In addition to the Total Lagrangian
approach [1–5], floating approach [6–8] and co-rotational ones
[9–26] have been considered for the development of efficient for-
mulations. Whilst the total Lagrangian approach can be considered
as the natural setting for geometrically exact dynamics, the co-
rotational method is still an attractive approach to derive highly
nonlinear beam elements because it combines accuracy with
numerical efficiency. Especially for very large structures with a
high number of beam elements, efficiency is still of great impor-
tance for successful simulation.

Response of large structures to earthquake, to impact or to
extreme loading conditions are some examples where dynamics
is essential with efficiency being a key ingredient that decides
about the choice of the finite element. Here, long term stability is
a fundamental feature of a time integration method to capture
extended responses over sufficiently long time intervals. Implicit
time stepping methods are often used together with nonlinear
finite elements to investigate complex dynamic problems. It is well
known that Newmark’s method [37] and alike are conditionally
stable for nonlinear dynamics. To avoid these instabilities, Geradin
and Cardona [38] introduced numerical dissipations (Alpha
method [39]) in order to damp the high frequencies with the con-
sequence that the system energy is not conserved [40,41]. Since
the early work of Simo and Tarnow [41], it is accepted that energy
conservation, respectively control, is key for stability. In their work,
they presented a methodology to construct time integration algo-
rithms that inherit, by design, the conservation of momenta and
energy for geometrically nonlinear problem involving quadratic
Green-Lagrange strains. Generally, the design of energy-
momentum conserving algorithms comes with conservation of lin-
ear and angular momentum as well, hence the term energy-
momentum methods. The core idea of these methods is to use a
discrete directional derivative to construct scheme that preserve
the Hamiltonian along with other integrals. This concept can be
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traced back to Gotusso [42] and was first applied to elastodynam-
ics by Gonzalez [43]. Since then much effort was devoted to
develop energy-momentum methods for various types of formula-
tions and structural elements. For nonlinear rod dynamics we refer
to [48–52] and contributions to nonlinear shell dynamics have
been made in [53–57], among others. In all cases, some form of
shearable structures were considered, that is, either the Reissner-
Mindlin kinematic for shells or the equivalent Timoshenko one
for the rod. Nonlinear dynamics of hypoelastic continuum has been
addressed by [43–45]. Further energy-momentum-related work is
that of Betsch and Steinmann [46]. A simple parameter free
collocation-type composite time integration scheme has been pro-
posed by Bathe [47] with the objective to conserve energy. Of spe-
cial interest, also with regard to this work, is the formulation by
Sansour et al. [54,55], which is designed to secure energy conserva-
tion independently of the nonlinear complexities involved in the
strain-displacement relations. It has been applied to arbitrary con-
tinuum formulations [61] and to geometrically exact Bernoulli
beam model [49]. Gams et al. [50] developed a time integration
algorithm in the spirit of the method described in [61] for the geo-
metrically exact planar Reissner beam. Besides, they considered
the dissipation of high frequency oscillations associated to
energy-momentum methods [62].

With regard to the co-rotational formulation for rods, we
employ here the one originally proposed by Rankin and Nour-
Omid [58,59], and further developed by Battini and Pacoste
[30,31] and many other authors. The fundamental idea of a co-
rotational formulation is to decompose the large motion of the ele-
ment into rigid body and pure deformation parts through the use
of a local system which continuously rotates and translates with
the element. The deformation is captured at the level of the local
reference frame, whereas the geometric nonlinearity induced by
the large rigid-body motion, is incorporated in the transformation
matrices relating local and global quantities. The main interest is
that the pure deformation part can be assumed as small and can
be represented by a linear or a low order nonlinear theory. Avoid-
ing the nonlinear relationship between the strain tensor and the
displacement gradient is what makes the co-rotational approach
very attractive and efficient for nonlinear static analysis. For a gen-
eral account, we refer also to [27–36].

As one may expect, there have been many efforts to develop
energy-momentum methods for co-rotational formulations as
well. These efforts have been only partially successful. Examples
of previous attempts are that of Crisfield and Shi [9] who devel-
oped a mid-point energy-conserving time integrator for co-
rotating planar trusses. In their formulation, the time-integration
strategy is closely linked to the co-rotational procedure which is
‘‘external” to the element. A similar approach was applied to the
dynamic of co-rotational shell [24] and laminated composite shells
[25]. Yang and Xia [26] proposed the energy-decaying and
momentum-conserving algorithm in the context of thin-shell
structures. Galvanetto and Crisfield [11] applied the previously
developed energy-conserving time-integration procedure to impli-
cit nonlinear dynamic analysis of planar beam structures. Various
end- and mid-point time integration schemes for the nonlinear
dynamic analysis of 3D co-rotational beams are discussed in [18].
They concluded that the proposed mid-point scheme is an ‘‘ap-
proximately energy conserving algorithm”. Le et al. [12] adopted
Interpolation Interdependent Element formulation [60], hence
cubic interpolation functions, to derive both the inertia and elastic
terms in conjunction with a Newmark-type time integration algo-
rithm and considering simplifications in the expression of the mass
matrix. Le et al. [12] showed that this formulation is more efficient
than using constant mass matrices as it requires less elements. The
formulation was extended to 3D Bernoulli beam elements without
[19,20] and with warping [21]. Salomon et al. [22] showed the con-

servation of energy and momentum in the 2D analysis. But, they
did not get exact angular momentum conservation in the 3D
analysis.

It was soon recognized that the decomposition of the beam
motion into a rigid and deformation-related parts with the help
of a local frame that moves with the beam produces complex
kinetic energy terms as a result of the movement of the local frame
regardless of order of the interpolating functions. To circumvent
these difficulties, Iura et al. [13] proposed to use an inertial frame
to derive kinetic energy function in terms the global displacement
components. Similar approach has been followed by Crisfield et al.
[10,18] who suggested to derive the mass matrix by interpolating
global quantities with linear shape functions (Timoshenko model).
The use an inertial frame to derive kinetic energy function in terms
the global displacement components was also recommended in
Crisfield et al. [18] as a remedy to complicated expressions of
kinetic energy-related terms.

In all the above examples energy conservation is either approx-
imately achieved or enforced by means of constraint equations.
Indeed, so far no method exists which inherently fulfills the con-
servation properties of energy and momenta in the context of co-
rotational formulation. It is with this goal in mind that we
approach the present research. At the heart of the approach is to
apply the fundamental ideas of Sansour et al. [54,55] in the context
of the present co-rotational formulation. The complexities induced
by the decomposition of the beam movement have hampered the
development of a consistent energy-momentum conserving co-
rotational formulation. While the fundamental idea of Sansour
et al. [54,55] can be summarized as using the strain-
displacement relations to deduce strain rate quantities with the
help of which then a strain filed is integrated using the same
schemes as for the displacement fields, the task as such is not as
straightforward as it may seem. The choice of the correct strain
rates is crucial since multiple nonlinear relations exist between
the displacements and further quantities which constitute the
strain field. Questions arise as to which of the nonlinear quantities
are to be integrated first. Also and beyond the possible formulation,
the applicability of the same in long-term dynamics is to be tested
as well.

The outline of the paper is as follows. In Section 2, the kinemat-
ics and strain measures of the 2D beam element are shortly pre-
sented. Section 3 is devoted to the Hamilton’s principle and the
conserving properties. In Section 4, the energy momentum scheme
is developed, the element (i.e. the elastic and inertia terms) is fully
derived. Proofs of the conservation of energy, linear and angular
momenta are given in Section 5. In Section 6, four numerical appli-
cations are presented in order to assess the performances of the
proposed method. The paper concludes in Section 7.

2. Beam kinematics and strain definition

2.1. Co-rotational beam kinematics

The kinematics of the beam and all the notations used in this
section are shown in Fig. 1. The motion of the element is decom-
posed in two parts. In a first step, a rigid body motion is defined
by the global translation (u1;w1) of the node 1 as well as the rigid
rotation a. This rigid motion defines a local coordinate system
(xl; zl) which continuously translates and rotates with the element.
In a second step, the element deformation is defined in the local
coordinate system. Assuming that the length of the element is
properly selected, the deformational part of the motion is always
small relative to the local co-ordinate systems. Consequently, the
local deformations can be expressed in a simplified manner. The
vectors of global and local displacements are now defined by
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