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a b s t r a c t

This work presents a constraint handling technique (CHT) for the solution of real-world engineering opti-
mization problems by evolutionary algorithms. Referred to as the Multiple Constraint Ranking (MCR), it
extends the rank-based approach from many CHTs, by building multiple separate queues based on the
values of the objective function and the violation of each constraint. This way, it overcomes difficulties
found by other techniques when faced with complex problems characterized by several constraints with
different orders of magnitude and/or different units.
The MCR follows an ‘‘uncoupled” approach where the CHT is not embedded into the optimization algo-

rithm. Extensive studies are performed to assess its accuracy and robustness, compared to six other up-
to-date CHTs, all implemented into the same canonical Genetic Algorithm to allow a neutral and unbiased
evaluation. The numerical experiments comprise benchmark functions from the IEEE-CEC competitions
on constrained optimization, and also classical structural engineering problems. The performance of
the CHTs is compared using efficiency measures in terms of nonparametric statistical tests. The results
indicate that the MCR is remarkably more accurate and robust for the subset of problems presenting
different-magnitude constraints, while remaining very competitive and one of the top-performers for
all other benchmark problems comprising the case studies.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The use of Evolutionary Algorithms (EAs) and other heuristic
methods has been quite common in industry, comprising an effi-
cient alternative for the solution of several types of engineering
optimization problems [1–9]. One of the most widely acknowl-
edged EA is the well-known Genetic Algorithm (GA) [10,11]; other
methods have also been proposed, such as the Particle Swarm
Optimization (PSO) [12,13], Artificial Immune Systems (AIS)
[14,15], Ant Colony Optimization (ACO) [16], Crow Search algo-
rithm [17], and many others.

Although originally designed to deal with unconstrained search
spaces [18,19], EAs have been successfully complemented by
constraint-handling techniques (CHTs) to solve constrained prob-
lems, guiding the search process to feasible regions and ideally
providing solutions that do not violate any constraint [20–22].
One important line of research consists in studying rank-based
CHTs. In this context, Runarsson and Yao [23] proposed the
Stochastic Ranking (SR) technique that balances objective and pen-
alty functions by a parameter Pf, producing a ranking by comparing
adjacent individuals. Later the same authors proposed the Global
Competitive Ranking (GCR) [24] which still balances objective
and violation function with the parameter Pf, and defines a fitness
function depending of two rankings: according to objective func-
tion and the sum of violations. Ho and Shimizu [25] proposed a
ranking scheme where the individuals are sorted using a function
defined according to three rankings, respectively the objective
function; the constraint violation values, and the number of vio-
lated constraints. More recently the Balanced Ranking Method
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(BRM) [26] was proposed where a merged row is built from two
rankings: one for feasible and another for infeasible solutions.

All those methods have undoubtedly presented many advan-
tages over earlier CHTs such as the standard static penalization
method, aiming to bypass their inherent shortcomings [20] when
applied to real-world, complex engineering problems. However,
for such problems there are still some issues and challenges related
to the definition of the fitness of a given candidate solution. Cur-
rently, the main issue might be how to combine into one term
all values involved in the evaluation and comparison of the individ-
uals from a given population, i.e. the objective and violation func-
tions that may have different orders of magnitude and/or different
units. This would not be an issue for the most usual cases where
the ranges of minimum and maximum violation values are known
a priori; these cases could be easily dealt with by usual normaliza-
tion procedures.

However, there are many real-world engineering applications
for which such information is not available and cannot be esti-
mated in advance, including for instance practical applications
related to offshore structures such as the optimization of risers
connected to floating platforms for offshore oil production
[9,27,28], or the optimization of subsea pipeline routes [29,30].
For instance, in this latter application the objective function may
be defined in terms of the pipeline length; also, in a multi-
objective approach another goal would be to maximize oil flow,
production and revenue. Moreover, many disparate constraints
are specified, such as declivity (measured in degrees); minimum
radius of curvature (in meters); structural constraints such as on-
bottom stability [31] and fatigue due to vortex-induced vibrations
(VIV) in free spans [32]. Constraints may be defined even as non-
dimensional quantities, such as the number of identified interfer-
ences of the route with seabed obstacles (subsea equipment, flow-
lines, other pre-existent pipelines, regions with corals or
geotechnical hazards). For such problems, existing CHTs would
tend to prioritize solutions-individuals that do not violate con-
straints with higher magnitudes; eventually, even with the use of
more advanced CHTs (such as the GCR or BRM) the influence of
constraints with lower magnitude may become insignificant, since
those techniques merge all violations into a single sum.

It might be argued that the range of violation values can be esti-
mated by inspecting the search space and evaluating candidate
solutions prior, or during, the evolutionary optimization process.
However, this might involve some drawbacks. Poor estimations
might lead to loss of information, compromising the adequate rep-
resentation of the constraints; many solutions might be located
near or beyond the extremes of the estimated range. Additional
evaluations might be required to produce reasonable estimations;
this might considerably increase the computational costs (due to
the complexity of the analysis methods required to assess the
structural constraints). Also, this procedure might also require user
intervention, which would not be much convenient. Ultimately, for
more accurate estimations the optimization process should be run
again.

In this context, this work describes a new ranking-based con-
strained handling technique, referred here as the Multiple Con-
straint Ranking (MCR). This method is specifically devised to
handle constraints with different orders of magnitude and/or dif-
ferent units, without additional computational overhead associ-
ated to the estimation of the range of violation values, and
without user intervention. To obtain another desirable characteris-
tic of a CHT, i.e. versatility, the MCR follows a so-called ‘‘uncou-
pled” approach where the CHT is not embedded into the
optimization algorithm. This allows its implementation along with
different evolutionary algorithms, such as in [33] where an ensem-
ble of four well-known uncoupled CHTs was proposed, each with
its own population.

Extensive studies on the MCR are presented, by applying it to
several benchmark functions (including those from the IEEE com-
petitions on real parameter constrained optimization, and also
classical structural engineering problems), and comparing its per-
formance with other up-to-date CHTs: the Adaptive Penalty
Method (APM) [34,35], Tournament Selection Method (TSM) [36],
Stochastic Ranking (SR) [23], Global Competitive Ranking (GCR)
[24], Ho and Shimizu ranking (HSR) [25] and Balanced Ranking
method (BRM) [26]. All CHTs were implemented into the same
evolutionary algorithm, thus providing a unique environment that
allows a fair, neutral and unbiased evaluation of the efficiency of
each CHT, and to compare their efficiency without being influenced
by the performance of the optimization algorithm. The compar-
isons are made using efficiency measures in terms of nonparamet-
ric statistical tests.

This paper is organized as follows: Initially, Section 2 summa-
rizes the main concepts related to constrained optimization with
evolutionary algorithms, and presents a brief description of the
compared CHTs. Section 3 presents the MCR and illustrates its
main characteristics by a simple example. The full sets of numeri-
cal experiments are described in Section 4, followed by an overall
assessment of the results in Section 5, while Section 6 presents a
critical analysis for each specific set of experiments. Final remarks
and conclusions are presented in Section 7.

2. Constrained optimization with evolutionary algorithms

A general constrained optimization problem may be formally
defined by considering a r-dimensional search space comprised
by a vector of design variables x = (x1, x2, x3, . . . ,xr), with compo-
nents xi presenting lower and upper bounds [lk, uk]. The goal is to
minimize an objective function f(x), considering inequality and
equality constraints (respectively gj(x) � 0 and hj(x) = 0) that
define the feasible region:

minimize f ðxÞ
subject to giðxÞ 6 0; i ¼ 1; . . . ;m

hjðxÞ ¼ 0; j ¼ 1; . . . ;p
lk 6 xk 6 uk; k ¼ 1; . . . ; q

ð1Þ

Repair methods have been devised to keep only feasible candi-
date solutions (FCS) along the evolutionary process, using domain
knowledge to move an infeasible offspring into the feasible set
[37,38]. One of the most popular approaches to treat constraints
has been to transform a constrained optimization problem into
an unconstrained one, by adding penalty functions p(x) to the
objective function f(x) whenever any given constraint is violated,
thus leading to an ‘‘expanded” objective function F(x), usually
referred simply as the ‘‘fitness” function:

FðxÞ ¼ f ðxÞ þ pðxÞ ð2Þ
The simplest penalty function p(x) is the so-called ‘‘death-

penalty” [20] that assigns arbitrarily large penalty values, or simply
discards the infeasible candidate solutions (ICS) from the optimiza-
tion process. However, this would prevent the search from using
valuable information from the infeasible solutions; thus, several
CHTs have been devised to maintain and manage the ICS that
unavoidably arise along the search process. The classical static pen-
alty technique consists of representing the penalty term p(x) as the
sum of values for violation functions vj(x) associated to each con-
straint, proportional to the degree of violation, and affected by pos-
itive constants – the penalty factors kj that scale and/or weight the
relative importance, or degree of severity, of the constraints. Con-
sidering for instance the m inequality constraints g, we have:
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