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a b s t r a c t

A Non-Smooth Contact Dynamic (NSCD) formulation is used to analyze complex assemblies of rigid
blocks, representative of real masonry structures. A model of associative friction sliding is proposed,
expressed through a Differential Variational Inequality (DVI) formulation, relying upon the theory of
Measure Differential Inclusion (MDI). A regularization is used in order to select a unique solution and
to avoid problems of indeterminacy in redundant contacts. This approach, complemented with an opti-
mized collision detection algorithm for convex contacts, results to be reliable for dynamic analyses of
masonry structures under static and dynamic loads. The approach is comprehensive, since we implement
a custom NSCD simulator based on the Project Chrono C++ framework, and we design custom tools for
pre- and post-processing through a user-friendly parametric design software. Representative examples
confirm that the method can handle 3-D complex structures, as typically are architectural masonry con-
structions, under both static and dynamic loading.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An advanced rigid-body dynamics formulation is used to ana-
lyze assemblies of rigid blocks, representative of architectural
masonry constructions, under static and dynamic loadings. The
method is interfaced with design custom tools for pre-processing
and post-processing through a user-friendly parametric design
software, which allows the design of complex masonry structures
in the three-dimensional space.

While the proposed model assumes blocks to be very stiff, it
focuses on the reliable description of associative friction laws at
the contact surfaces. This approach was introduced for masonry
constructions by Kooharian [27], who envisioned the possibility
of studying structures of this kind within the plasticity theory.
Under the assumption of unilateral constraints and absence of ten-
sile strength, limit analysis was used to calculate the load which
causes instability at the contact surfaces between the blocks [23].
The reliability and advantages of this approach are founded on
the characteristics of this type of structures, which are prone to
instability failure because of the definite prevalence of compres-

sive strength over tensile strength. Meanwhile, other analyses that
require the exact knowledge of the material parameters are diffi-
cult to be applied, because masonry is a composite material for
which the nature of the composing blocks and interlayers, as well
as their interactions, is highly irregular and, therefore, uncertain.
Experiments [6,7] have provided evidence that, when a great num-
ber of blocks is organized into very complex arrangements, the
stress percolation results to be highly localized, evidencing unload-
ing islands in a stress stream.

Compared to the thrust-line graphical method [13,10], still used
in the current practice for preliminary analyses, the dynamical for-
mulations of the problem, as indicated by Livesley and Gilbert
[30,21], provide significant advances because all the possible types
of movements are considered and the interactions between all
blocks can be fully appreciated. In particular, the method proposed
here is set within the category of the Non-Smooth Contact
Dynamic (NSCD) framework, firstly developed by Moreau [32] to
handle specifically unilateral constraints. This provides a proper
definition of contacts, whose value can be clarified comparing
the NSCD approach with alternative mathematical formulations,
namely the Ordinary Differential Equations (ODE) and the Differ-
ential Algebraic Equations (DAE) formulations [19], which have
been more often applied to masonry. The DAE approach is the
more refined and expresses constraint equations together with
the differential equations, as it happens in the classical multi-
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body dynamics at the base of most Discrete Element Method soft-
ware (DEM) [12]. In methods of this kind, contacts are modeled
with penalty functions, which represent spring-damper elements
whose flexibility can be adjusted to match the real stiffness of
the contact surfaces, for instance using the Hertz-Mindlin theory
or similar models. However, a physically accurate compliance of
contact points with high stiffness coefficients results in steep pen-
alty functions, something that would require extremely short time
steps in most ODE or DAE integrator algorithm, at the point of
being very inefficient or even unusable [22].

More specifically, modeling very rigid blocks provides the
opportunity to reproduce the stick-slip transition, representing a
sudden change in motion at collision. This is a typical contact phe-
nomenon that strongly affects the failure mechanism and the cor-
responding ultimate load. Our model, by leveraging on the theory
of Measure Differential Inclusions (MDI) [34,33], describes forces
and accelerations as distributions of measures, while velocities
are functions of Bounded Variation (BV), not necessarily continu-
ous. Instead, the aforementioned alternative approaches describe
velocities through smooth functions, which therefore cannot rep-
resent the sudden changes in motion at collision [1]. Despite work-
arounds have been proposed [35,20], they actually detriment the
clarity of the model and the initial advantage of those methods
in terms of computational effort.

The NSCD framework implemented here has been developed
by one of the authors within the Project Chrono, a multi body
dynamics C++ library [31]. As in the Fortran implementation of
[25], the time integration method is stable even under large
time steps, and the user has to set just the mass and friction
parameters of the material. It should be remarked that modeling
masonry blocks as perfectly rigid contacts may seem idealized,
but it does not decrease the quality of the model. In fact, for
the reasons mentioned earlier, stiffness and damping laws are
affected by local complex geometric and rheological phenomena,
that cannot be assessed, even limiting to average physical
values, without an ad hoc experimental research on its own.
Moreover, even the most classical solution for linear elastic bod-
ies under concentrated contact forces suffers from intrinsic
inconsistencies [17]. To our knowledge, only recently the NSCD
formulation for rigid blocks has started to be successfully
applied to the study of old, possibly deteriorated, masonry con-
struction [29], but many variations are possible within this
broad class of models.

Especially, the friction law used in the proposed approach
deserves further comments. According to experimental results
[50,9], friction is slightly associative because of roughness of the
contact profiles, i.e., a normal displacement (dilatancy) accompa-
nies sliding across the frictional surface [18]. However, it is clear
since the work by Drucker [14] that sliding in the presence of fric-
tion à la Coulomb invalidates the general bounding theorems of
plasticity, since the normality rule is not fulfilled. The formulation
of the problem is complicated, and a right failure load may be asso-
ciated with an incorrect failure mode [21]. Our approach includes
set-valued force laws and complementarity constraints as required
by the original Coulomb contact model. This is formulated as a Dif-
ferential Variational Inequality (DVI). As such, DVIs impose con-
straints in the form of Variational Inequalities (VI) during the
time evolution of the system [38,37]. Such set-valued functions
can be expressed by the same MDI theory.

A common issue in NSCD methods as applied to masonry struc-
tures [15,28,41] is the multiplicity of solutions for the contact
forces, especially in the tangential direction. This is a natural con-
sequence of the rigid body idealization, although it often does not
affect the uniqueness of solutions for speeds and trajectories. Here,
we introduce a regularization that ensures uniqueness even for
contact forces, resulting in better numerical performance of the

time-stepping algorithm and in improved clarity of the plotted
results.

When one deals with architectural complex masonry struc-
tures, not only the simulation time, but even the geometrical def-
inition of blocks and the communicability of the results can be a
problem. This is why we have integrated our computational soft-
ware with a userfriendly design tool. We used the Grasshop-
per@ free parametric design plug-in for the Rhino@ CAD
software, both to generate and modify the geometry of the source
data and to post-process the computational results. With such a
tool we provide the real-time visualization of forces, stress and col-
lapse mechanisms, and displays the effective thrust line in arches,
as the envelope curve of the resultant of the contact forces at the
blocks interfaces.

The plan of the article is as follows. In Section 2 we present the
proposed method and its numerical implementation, with special
focus on the contact frictional model. In Section 3, the potentiality
of the method is highlighted through the analysis of representative
case studies. The efficiency of the computations is addressed in
Section 4, where we study the response to dynamic loads. The
overall achievements, drawbacks and further developments are
discussed in the concluding Section 5.

2. Non-smooth contact dynamics

In a classical ODE or DAE, one assumes smooth speeds and
accelerations. However, the introduction of hard contacts leads to
non-smooth trajectories, and this requires a NSCD framework
based on MDI, that encompasses jumps in speeds. In a MDI, accel-
eration is not a function in a classical sense because, as a conse-
quence of impact events and other impulsive phenomena, it
contains a certain number of spikes, which can be considered using
the theory of (vector signed) measure distributions. In detail, posi-
tions qðtÞ are Absolutely Continuous (AC) functions but speeds vðtÞ
are functions of Bounded Variation (BV), with finite variationWtb

ta vðtÞ for ½ta; tb� � ½0; T�, i.e., they do not need to be absolutely
continuous or even continuous.

Before proceeding with the mathematical model of our NSCD
problem, we need to introduce some definitions.

Definition 1. A Variational Inequality VI(F;K) is a problem of the
type

x 2 K : FðxÞ; y � xh i P 0 8y 2 K; ð1Þ
with K closed and convex, and FðxÞ : K ! Rn continuous.

Definition 2. The dual cone K� of K is a convex cone expressed as:

K� ¼ y 2 Rn : y; xh i P 0 8x 2 Kf g: ð2Þ

Definition 3. A Cone Complementarity Problem CCP(A;b;!) is the
problem of finding a x that satisfies

Ax� b 2 !�
; x 2 !; Ax� b; xh i ¼ 0; ð3Þ

where ! is a (convex) cone. One can also use the notation
Ax� b 2 !� ? x 2 !. The CCP is equivalent to a VI where K ¼ !
and with affine F .

2.1. System state

For each i-th block in the system, we introduce the position
xi 2 R3 of its center of mass, and we introduce its rotation matrix
Ai 2 SO3, both expressed relatively to the absolute reference. To
avoid redundant parameters, we parametrize SO3 using its double
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