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a b s t r a c t

This work is concerned with the development of an effective technique to model the propagation of inter-
acting acoustic and elastic waves. Here, spatial discretization by finite elements is adopted, and uncou-
pled analyses of acoustic and elastodynamic subdomains are considered, with the interaction between
the different subdomains of the model being accomplished by interface forces. Adaptive explicit and
implicit time-marching techniques are employed, in which the time integrators are locally computed,
assuming different values along the spatial and temporal discretizations, as the solution evolves. The pro-
posed solution algorithm is very efficient, accurate, flexible and easy to implement, standing as a very
attractive approach. At the end of the paper, numerical results are presented, illustrating the good per-
formance and potentialities of the new methodology.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Time domain numerical modelling of wave propagation in
highly heterogeneous media requires robust simulation algorithms
in order to preserve accuracy, efficiency and stability. In some con-
figurations, this situation becomes even more complex, and differ-
ent types of waves interact through different subdomains,
requiring interface routines to be introduced to properly analyze
the coupled model. This is the case considering acoustic-
elastodynamic interacting domains. In this context, several numer-
ical difficulties may arise, and very poor results may be obtained if
proper techniques are not considered.

In the context of the Finite Difference Method, for instance,
Lombard and Piraux [1] list the following main reasons for low
confidence results in a situation where there is discontinuity of
physical properties: (i) spurious diffractions occur due to the
stair-step representation of arbitrarily shaped interfaces [2]; (ii)
reduction of the convergence order due to the non-smoothness
of the solution across the interfaces, leading to numerical instabil-
ities even for low contrast physical parameters [3]; (iii) the jump
conditions and the boundary conditions are not incorporated in
the schemes, so that the conversion, refraction and diffraction
wave phenomena are not correctly described [4]; etc. In fact, sev-

eral problems may arise taking into account the simulation of cou-
pled acoustic-elastodynamic models according to the numerical
techniques that are employed. In addition to these difficulties, effi-
ciency is another issue that must be dealt with properly. In this
case, accuracy and stability may restrict the time-step size to very
small values, which are adequate to subdomains with high wave
propagation velocities, severely damaging the efficiency of the
analysis. Moreover, the coupled systems of equations that arise,
taking into account all subdomains of the model, may get too
extensive, demanding a lot of computational resources and becom-
ing very ineffective (or even prohibitive), also severely damaging
the efficiency of the methodology. In fact, developing proper
numerical techniques to analyze wave propagation through cou-
pled acoustic and elastodynamic media is a challenging field, and
several efforts have been applied on the topic, allowing a vast liter-
ature to be available nowadays [5–28].

This work proposes a new formulation to analyze coupled
acoustic-elastodynamic models. As one will observe, the proposed
new procedure is quite effective, eliminating most of the thorny
issues related to this type of problem, as well as providing very
accurate and efficient analysis. Here, the spatial discretization of
the interacting acoustic and elastodynamic subdomains is carried
out taking into account the Finite Element Method (FEM) [29,30].
The time domain analysis of the hyperbolic systems of equations
that arise, once spatial discretization by standard finite elements
is considered, is carried out taking into account the new adaptive
methodology proposed by Soares [31]. In this methodology, two
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time integration parameters are considered, namely a and c, which
are allowed to assume different values at each FEM element and at
each time step. The computation of the c parameter is designed to
improve the accuracy and to ensure the stability of the analysis,
and it defines the so-called explicit and implicit approaches of
the model. The evaluation of the a parameter, on the other hand,
focuses on enabling an effective numerical dissipative algorithm,
aiming to eliminate the influence of spurious modes and to reduce
amplitude decay errors; it defines the so-called dissipative and
non-dissipative elements of the model, which are relabeled at each
time step of the analysis. The proposed adaptive strategy is non-
iterative, and the values for the time integrators are simply and
directly computed taking into account just the physical/geometri-
cal proprieties of the finite elements of the spatial discretization,
the adopted time-step, and local previous time-step results. In
addition, the proposed technique is only based on single-step rela-
tions involving two variables: the incognita field and its first time
derivative. Thus, just a single set of equations has to be dealt with
within a time-step (which becomes trivial if explicit analyses are
considered), and the resulting method stands as truly self-
starting, eliminating any kind of cumbersome initial procedure,
such as the computation of initial second time derivative values
and/or the computation of multistep initial values.

Since the adopted time-marching formulation enables explicit
or implicit analyses to be carried out, the acoustic fluid subdo-
mains of the model may consider an explicit formulation, allowing
the coupled governing system of equations to get uncoupled along
time. Thus, each subdomain of the coupled model can be analysed
separately (as a staggered uncoupled model), rendering a very effi-
cient approach. In the present work, two time domain approaches
are discussed, taking into account the solution of the coupled fluid-
solid model. In the first approach, the acoustic and the elastody-
namic subdomains of the model consider an explicit time domain
formulation, rendering an explicit-explicit technique. In the second
approach, the acoustic and the elastodynamic subdomains of the
model consider an explicit and an implicit time domain formula-
tion, respectively, rendering an explicit-implicit technique. In both
cases, the effectiveness of the proposed techniques is remarkable.

The manuscript is organized as follows: first (Section 2), the
governing equations for the acoustic fluid and elastodynamic solid
subdomains are presented, as well as their coupling equations. In
the sequence, the spatial and temporal discretizations for the dif-
ferent subdomains are briefly described (Section 3) and the pro-
posed algorithm for the coupled model solution is discussed
(Section 4). At the end of the paper (Section 5), numerical results
are presented, illustrating the accuracy and potentialities of the
proposed methodologies.

2. Governing equations

In the present section, acoustic and elastic wave equations are
briefly discussed. These wave propagation models are used to
describe the fluid and solid subdomains of the coupled problem
that is focused here. At the end of the section, the basic equations
related to the coupling of the acoustic and elastodynamic subdo-
mains are presented.

2.1. Acoustic subdomains

The acoustic wave equation is given by:

ðjp;iÞ;i � q€p� 1 _pþ a ¼ 0 ð1Þ

where pðx; tÞ stands for the hydrodynamic pressure distribution and
aðx; tÞ for body source terms. Inferior commas (indicial notation is
adopted) and over dots indicate partial space (p;i ¼ @p=@xi) and time

( _p ¼ @p=@t) derivatives, respectively. qðxÞ stands for the mass den-
sity, jðxÞ is the bulk modulus of the medium, and 1ðxÞ represents
the viscous damping parameter. In homogeneous media, q and j
are constant and the classical wave equation can be written, with
1 ¼ 0, as:

p;ii � ð1=c2Þ€pþ a=j ¼ 0 ð2Þ

where c ¼ ffiffiffiffiffiffiffiffiffi
j=q

p
is the wave propagation speed. The boundary and

initial conditions of the problem are given by:
(i) Boundary conditions (t > 0, x 2 C where C ¼ C1 [ C2)

pðx; tÞ ¼ pðx; tÞ for x 2 C1 ð3aÞ

qðx; tÞ ¼ p;jðx; tÞnjðxÞ ¼ qðx; tÞ for x 2 C2 ð3bÞ
(ii) Initial conditions (t = 0, x 2 C [X):

pðx;0Þ ¼ p0ðxÞ ð4aÞ

_pðx;0Þ ¼ _p0ðxÞ ð4bÞ
where the prescribed values are indicated by overbars and q repre-
sents the flux along the boundary whose unit outward normal vec-
tor components are represented by nj. The boundary of the model is
denoted by C (C1 [ C2 ¼ C and C1 \ C2 ¼ £) and the domain by X.

2.2. Elastodynamic subdomains

The elastic wave equation for homogenous media is given by:

ðc2d � c2s Þuj;ji þ c2s ui;jj � €ui � 10 _ui þ bi ¼ 0 ð5Þ

where uiðx; tÞ and biðx; tÞ stand for displacement and body force dis-
tribution components, respectively. cd is the dilatational wave
velocity and cs is the shear wave velocity, which are given by:
c2d ¼ ðkþ 2lÞ=q and c2s ¼ l=q, where q is the mass density and k
and l are the Lamé’s constants of the medium. The viscous damping
term is defined by 10 ¼ 1=q. Eq. (5) can be obtained from the com-
bination of the following basic mechanical equations (proper to
model heterogeneous media):

rij;j � q€ui � 1 _ui þ qbi ¼ 0 ð6aÞ

rij ¼ kdijekk þ 2leij ð6bÞ

eij ¼ 1
2
ðui;j þ uj;iÞ ð6cÞ

where rijðx; tÞ and eijðx; tÞ are, respectively, stress and strain tensor
components and dij is the Kronecker delta (dij = 1, for i = j and dij = 0,
for i– j). Eq. (6a) is the momentum equilibrium equation; Eq. (6b)
represents the constitutive law of the model; and Eq. (6c) stands for
kinematical relations. The boundary and initial conditions of the
elastodynamic problem are given by:

(i) Boundary conditions (t > 0, x 2 C where C ¼ C1 [ C2)
uiðx; tÞ ¼ uiðx; tÞ for x 2 C1 ð7aÞ

siðx; tÞ ¼ rijðx; tÞnjðxÞ ¼ siðx; tÞ for x 2 C2 ð7bÞ
(ii) Initial conditions (t = 0, x 2 C [X)

uiðx;0Þ ¼ ui0ðxÞ ð8aÞ

_uiðx;0Þ ¼ _ui0ðxÞ ð8bÞ
where once again, the prescribed values are indicated by overbars
and siðx; tÞ denotes the traction vector along the boundary (nj, as
previously indicated, stands for the components of the unit outward
normal vector).
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