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a b s t r a c t

A higher-order beam theory is proposed for the analysis of a thin-walled beam with a generally shaped
cross section, which consists of straight cross-section edges and is non-uniform along the axial direction.
To derive cross-sectional shape functions for the higher-order deformation modes, a new approach is
introduced using a set of beam frame models. The distortions with inextensional cross-sectional walls
are determined by solving an eigenvalue problem of a beam frame model under inextensional wall con-
straints. Subsequently, the distortions with extensional cross-sectional walls are evaluated by consider-
ing orthogonality with respect to the inextensional distortions. Moreover, the extensional distortions due
to the Poisson effect, which is generated due to the uniform axial strain of the rigid-body cross-sectional
deformations, are considered. Warpings induced by the inextensional and extensional distortions are
consistently defined based on the orders of the tangential displacements of their corresponding distor-
tions. To deal with the varying cross section, three-dimensional displacements at an arbitrary point
are interpolated using those at the cross sections of the nodes, where the beam frame analyses are per-
formed. The proposed method is validated by performing static and vibration analyses of beams with
varying single- and multi-cell cross sections.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Frame structures, such as automotive bodies, comprise beams
with generally shaped cross sections that vary in the axial direc-
tion. Although the static and dynamic behavior of a thin-walled
beam structure can be accurately evaluated using shell elements,
interpreting the structural response is difficult from the viewpoint
of the cross-sectional property of the beam. The use of beam ele-
ments for the analysis of thin-walled beams with varying cross sec-
tion, however, does not yield sufficiently accurate results for
implementation in a design process. To solve this problem,
higher-order cross-sectional deformations need to be considered,
and the effect of cross-sectional variation must be appropriately
reflected while formulating the beam elements.

In a higher-order beam theory, higher-order cross-sectional
deformations are employed as field variables; three-dimensional
displacements at a general point on a beam are approximated
using cross-sectional shape functions and one-dimensional defor-
mation measures (or field variables). By doing so, three-

dimensional elasticity equations can be reduced to a set of one-
dimensional governing equations, whose coefficients are calcu-
lated by integrating the products of the cross-sectional shape func-
tions or their derivatives. Since the early studies by Vlasov [1] and
von Kármán and Christensen [2] on warpings in open and closed
thin-walled cross sections, respectively, many studies on higher-
order beam theories have been conducted. For example, Boswell
and Zhang [3] analyzed straight and curved girder bridges with
symmetric single- and multi-cell cross sections using three addi-
tional higher-order cross-sectional modes: torsional warping, dis-
tortion, and distortional warping. In their approach, a zero shear
strain assumption on the midline of the cross-sectional walls, pro-
posed by Vlasov [1], was employed to derive the warpings due to
torsion or distortion. The use of distortions for the analysis of a
symmetrical cross section can be also found in the studies by Ker-
mani and Waldron [4] and Kim and Kim [5], Kim and Kim [6]. Kim
and Kim [5], Kim and Kim [6] analytically derived the shape func-
tions of the torsional and bending distortions for a rectangular
cross section by assuming constant tangential displacements;
moreover, they employed kinematic and moment continuity con-
ditions for the corners of the cross section. In these approaches,
the main objective was to analytically derive the shape functions
of a single distortion and its associated warping, which are
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expected when straight and curved beams undergo torsion and in-
plane bending, respectively. Hence, their effectiveness was limited
because of the geometry of the cross section as well as loading
conditions.

Recent studies on higher-order beams employ multiple warp-
ings and distortions as out-of-plane and in-plane cross-sectional
deformations, respectively, to deal with any given geometry of a
cross section and general loading conditions. Ferradi and Cespedes
[7] derived distortions of a cross section by using the eigenmodes
of a two-dimensional cross-sectional model, which was discretized
with triangular solid elements or beam elements. For each distor-
tion mode, they calculated multiple warping modes using an iter-
ative scheme. Vieira et al. [8] expressed beam-governing equations
as a quartic eigenvalue problem, from which they derived not only
the non-vanishing deformations corresponding to the zero eigen-
values, but also the warping and distortional modes corresponding
to the nonzero eigenvalues. Moreover, they simplified a general-
ized eigenvalue problem to a linear form by assuming no in-
plane higher-order deformations [9]. The generalized beam theory
(GBT) introduced by Schardt [10] was used to calculate higher-
order cross-sectional deformations based on the assumptions of
inextensible walls and zero shear strain on the midline of walls.
In GBT, using the piecewise linear-warping modes, rigid, distor-
tional, and local modes are derived as an orthogonal set of the
in-plane deformations [11,12]. Gonçalves et al. [13], Piccardo
et al. [15], and Bebiano et al. [14] relaxed the kinematic assump-
tions of the inextensible walls and zero shear strain so that the
extensional distortion modes and shear modes are introduced.
Instead of calculating the higher-order modes for a given cross sec-
tion, displacement fields can be developed through Taylor series as
a unified formulation. Carrera et al. [16] proposed to refine the
three-dimensional displacements at an arbitrary point on a cross
section using Taylor-type polynomial expansions with respect to
the cross-sectional coordinates. They applied the unified formula-
tion to a cross section with a general geometry for static, dynamic,
and buckling problems of isotropic or composite beams [17–19].
The beam-governing equations can also be derived by applying
the variational asymptotic method to the energy functional
[20,21]. The effect of the warping was derived using the variational
asymptotic method for problems regarding geometrically nonlin-
ear beams such as initially twisted and curved composite beams
[20].

In this study, static and vibration problems of a straight or
curved thin-walled beam with a generally shaped cross section
that varies in the axial direction are solved. To this end, the static
analysis performed by Choi et al. [22] for quadrilateral cross-
sectional problems is extended. They showed that the geometric
complexity of a varying cross section generates coupling between
the deformation measures; hence, the order of the cross-
sectional deformation modes is higher than the case wherein the
cross section is uniform. Choi et al. [22] employed distortion modes
with extensional walls as well as those with inextensional walls. In
their approach, distortions were calculated by solving the eigen-
value problem of a beam frame model, obtained from the study
by Jang et al. [23]. Some of the extensional distortion modes,
referred to as the Poisson distortions, can be analytically derived
by solving equilibrium equations of plane stress conditions, assum-
ing uniform strains in the axial direction of a beam for three rigid-
body cross-sectional deformations: axial translation via exten-
sion/compression and two rotations via bending. Hence, the num-
ber of Poisson distortions is three. For each distortion of a
quadrilateral cross section, a corresponding warping is also analyt-
ically derived in an integration form. Unfortunately, the analytical
method, proposed by Choi et al. [22], cannot be employed for a
cross section with a general shape because of the lack of constraint
equations; the number of unknowns resulting from the integration

of the equilibrium equation is greater than the number of kine-
matic continuity conditions, moment continuity equations, and
orthogonality conditions.

To consider a general geometry of a thin-walled cross section, a
set of beam frame models are introduced in this study. For the dis-
tortion modes, a beam frame model discretized using the Euler
beam elements are employed, from which distortions are selected
as the lowest eigenmodes. For the warping modes, a beam frame is
modeled differently depending on whether the corresponding dis-
tortions are inextensional or extensional. As warping is obtained
from the equilibrium equation by double integrating the derivative
of the tangential displacement of its corresponding distortion [22],
the order of the warping should be set higher than that of the tan-
gential displacement of the distortion. Hence, linear and quadratic
beam frame models are separately employed to calculate warpings
induced by inextensional and extensional distortion modes,
respectively. Because of the relation between the order of the tan-
gential displacement of distortion and the corresponding warping,
each distortion needs be identified as either an inextensional mode
or an extensional mode. In this study, first, the inextensional dis-
tortion modes are calculated by setting inextensional wall con-
straints; subsequently, the extensional distortion modes are
calculated by considering orthogonality with respect to the inex-
tensional distortions. The edgewise linear shapes in the tangential
directions are allowed for the extensional distortion modes so that
the corresponding warpings are consistently obtained using a
beam frame model with edgewise quadratic shape functions.
Moreover, the warping modes for the inextensional distortions
are obtained as eigenmodes of a linear beam frame. Similarly, Pic-
cardo et al. [15] attempted to separate the inextensional and
extensional distortion modes. However, in this study, no constraint
is set on the tangential deformation of the extensional distortions,
and all the warping modes are obtained by solving the eigenvalue
problem of a beam frame with linear shape functions.

By interpolating the three-dimensional displacements at the
cross sections of the nodes, where the beam frame analyses are
performed, three-dimensional displacements at an arbitrary point
of a beam element can be obtained. The strains and stresses
expressed in terms of the local coordinates on the wall of a beam
element are calculated using coordinate transformations, from
which stiffness and mass matrices can be derived using the princi-
ple of virtual displacements. To validate the proposed method,
straight and curved beam problems with varying closed cross sec-
tion are solved. The effect of the higher-order modes on the accu-
racy of the solution is investigated using different sets of degrees of
freedom. A twisted open cross-sectional problem and a multi-cell
cross-sectional problem are also solved. The results of the vibration
analyses are presented for the beams with single- and multi-cell
cross sections.

2. Cross-sectional shape functions for general cross sections

2.1. Displacements on the midline of cross section

Fig. 1 illustrates the generally shaped cross section of a thin-
walled beam, which comprises finite number of straight edges
(or walls). The three-dimensional displacements on the midline
of the cross-sectional walls are expressed as follows.

upðs; zÞ ¼
XNw

i¼1

wi
pðsÞdiðzÞ ¼ wpd; ðp ¼ n; s; zÞ; ð1Þ

where s and n are the tangential and outward normal coordinates
on the cross-sectional contour, respectively, and z is the axial coor-
dinate of the beam (see Fig. 1.) In Fig. 1, note that s and n are edge-
wise defined. In Eq. (1), wi

pðsÞ denotes the shape functions for the
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