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a b s t r a c t

Structural identification through finite element model updating has gained increased importance as an
applied experimental technique for performance-based structural assessment and health monitoring.
However, practical challenges associated with computability, feasibility, and uniqueness present in the
structured nonlinear inverse eigenvalue problem develop as a result of the necessary use of partially
described and incompletely measured mode shapes. As an alternative to direct methods and
optimization-based approaches, this paper proposes a new paradigm for model updating that is based
on formulating the structured inverse eigenvalue problem as a Constraint Satisfaction Problem.
Interval arithmetic and contractor programming are introduced as a means for generating feasible solu-
tions to a structured inverse eigenvalue problem within a bounded parameter search space. This frame-
work offers the ability to solve under-determined and non-unique inverse problems as well as
accommodate measurement uncertainty through relaxation of constraint equations. These abilities
address key challenges in quantifying uncertainty in parameter estimates obtained through structural
identification and enable the exploration of alternative solutions to the global minimum that may better
reflect the true physical properties of the structure. These capabilities are first demonstrated using syn-
thetic data from a numerical mass-spring model and then extended to experimental data from a labora-
tory shear building model. Lastly, the methodology is contrasted with probabilistic model updating to
highlight the advantages and unique capabilities offered by the methodology in addressing the effects
of measurement uncertainty on the parameter estimation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past several decades, numerous techniques have been
devised to develop updated structural stiffness and mass matrices
from modal parameter estimates obtained from either experimen-
tal or operational modal analysis. Within structural identification,
the properties of the updated model are used to infer the behavior
and performance of the structure to inform decision-making [1].
Consequently, instilling confidence that parameter assignments
in the updated model closely reflect physical reality is critical to
the use of structural identification for applications in
performance-based civil engineering and structural health moni-
toring. Likewise, understanding the uncertainty in the parameter
estimates in the presence of measurement noise and potential
ill-conditioning of the inverse problem is necessary to provide reli-
able and actionable information.

Traditionally, the finite element model updating problem has
been framed using the generalized eigenvalue problem for
undamped multiple degree of freedom linear systems:

KU ¼ MUX2 ð1Þ

where M and K are the mass and stiffness matrices, X2 is a diagonal
matrix containing the eigenvalues (x2

n , wherexn are the undamped
natural frequencies) on the diagonal, and U is the matrix containing
the corresponding eigenvectors, or mode shapes, as columns of the
matrix. This generalized eigenvalue problem has been adopted for
the majority of structural identification applications since the finite
element method can be used to readily construct the mass and stiff-
ness matrices, while experimentally measured relative damping
factors can be used to construct the corresponding damping matrix
for the system. The general objective of model updating is to modify
the stiffness and mass matrices of an analytical model of the struc-
ture such that the eigenproperties of the model obtain the best pos-
sible match to experimentally measured values, while preserving
physical meaning and structural constraints in the matrices.
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Although this objective is easily described, there are many practical
challenges that arise from the nature of vibration testing and ana-
lytical modeling that are ubiquitous to all methods employed for
model updating. Namely:

� The practical measurement bandwidth of vibration transducers
is limited, which effectively limits the measurement of the
eigenvalues and eigenvectors of the system under test to typi-
cally a small subset of all of those that would exist in the corre-
sponding analytical model. This case is commonly referred to as
having partially described eigeninformation pairs [2].

� It is impractical to completely measure all corresponding
degrees of freedom in the analytical model, so the experimental
mode shapes are incomplete measurements of the eigenvector.
For models of even modest size structures, the number of sen-
sors required to measure every degree of freedom in a suffi-
ciently discretized finite element model is generally
prohibitive. Furthermore, the direct measurement of some rows
of the eigenvector, such as those associated with the rotational
degrees of freedom, is not even possible with conventional
transducers [3].

� Noise and uncertainty in the measurements, as well as assump-
tions inherent to system identification algorithms, yield mode
shapes that no longer satisfy orthogonality relationships and
are unlikely to satisfy equality constraints. Likewise, discretiza-
tion errors and idealizations inherent to the model, such as ele-
ment type and mesh connectivity, are not explicitly corrected in
conventional finite element model updating schemes [4].

Currently, the two most prevalent techniques applied for struc-
tural identification are deterministic and probabilistic methods of
finite element model updating. Deterministic methods seek to
identify optimal assignments for a set of uncertain parameters in
the model by minimizing the residuals between measured and
estimated modal parameters by application of various optimiza-
tion techniques [5–7]. While these techniques have been applied
for structural identification of several full-scale structures [8,9],
their application is generally plagued by issues associated with
computational speed, solution uniqueness, ill-conditioning, and
parameter selection and sensitivity [10]. Furthermore, finite ele-
ment model updating problems suffer from the underlying issue
that the global minimum may not necessarily reflect the best
match to the physical reality due to uncorrected errors arising from
idealization and discretization in the model and uncertainties in
the measurements [4]. These challenges have given rise to proba-
bilistic finite element model updating approaches [11], which
incorporate uncertainties in the model and the measurements to
identify the most probable solutions using statistical methods.
However, these probabilistic methods require an assumed proba-
bility density function for uncertain variables and often require
computationally expensive simulations to arrive at the solution
[7]. Lastly, it should be noted that direct methods for solving
inverse eigenvalue problems with incompletely measured mode
shapes through solution of a descriptor Sylvester equation have
recently emerged [12,13], however their application has yet to
demonstrate the capability to preserve the connectivity structure
of the matrices.

Although probabilistic approaches have been the most preva-
lently used to address uncertainties in structural models, interval
methods provide an alternative approach that may offer computa-
tional advantages over probabilistic techniques [14,15]. Recently,
interval-based model updating strategies have been proposed for
handling inherent uncertainties in the experimental modal param-
eter estimates and the finite element model [16]. The most closely
related work to the current study leverages interval global opti-
mization to arrive at solutions to the model updating problem

[17]. However, the technique proposed in this prior work is formu-
lated on an inclusion set for the eigenvalues of an interval stiffness
matrix and employs a simple branch and bound algorithm to min-
imize an objective function rather than solve a constraint satisfac-
tion problem. An extension of this work incorporated interval
eigenvectors in the optimization through an acceptance criteria
based on the modal assurance criterion [18]. It should also be
noted that the term ‘‘interval model updating” has also been
recently used to described the application of interval arithmetic
techniques in the estimation of parameter variability [19,20]. How-
ever, these approaches address the field of stochastic model updat-
ing [21], wherein the objective is to characterize the variabilities
across a number of experimental tests performed on nominally
identical structures. While the constraint satisfaction formulation
proposed in the current work may have extensions to stochastic
model updating, the subject of this current paper is on the class
of model updating applications where measurements obtained
from a single structure are used to calibrate a numerical model.

This paper presents a novel formulation of the finite element
model updating problem as a constraint satisfaction problem and
explores the use of a nonlinear constraint satisfaction processor
with interval arithmetic and contractor programming to yield esti-
mates of uncertain model parameters and unmeasured compo-
nents of the eigenvectors. The method is shown to be capable of
delivering a complete set of feasible solutions to the structured
inverse eigenvalue problem with partially described and incom-
pletely measured eigeninformation pairs from either synthetic or
experimental data. Furthermore, the approach is successfully
demonstrated on ill-posed problems with multiple solutions to
illustrate its capability for addressing this challenge as well as pro-
viding a foundation to introduce practitioner heuristics into the
identification of physically plausible solution sets.

2. Nonlinear constraint satisfaction with contractor
programming and interval analysis

In the domain of engineering sciences, many applications
require finding all possible and potentially isolated solutions satis-
fiable to a set of constraints over real numbers. The system of equa-
tions may be non-polynomial and the computational complexity to
solve such systems is NP-hard. This set of problems are called Con-
straint Satisfaction Problems (CSPs) [22–24]. The approach
explored in this paper for the solution of partially described and
incompletely measured inverse eigenvalue problems relies on
framing the structured inverse eigenvalue problem as a nonlinear
CSP. By developing the model updating problem in this framework,
unique capabilities for addressing challenges related to ill-
posedness and ill-conditioning are revealed, as detailed in later
sections. The following discussion provides some details on the
fundamentals of CSPs, interval analysis, and contractor program-
ming that are essential for the understanding of the rest of the
paper.

Fundamentally, a CSP can be defined as a 4-tuple < V ;D; C; L >

where:

� V ¼ fv1;v2; . . . ;vng is a set of variables,
� D ¼ fd1; d2; . . . ; dng is a set of domains for prospective variables,
� C ¼ fc1; c2; . . . ; cng is a set of constraints over the variables,
� L is a set of labels that map constraints to the variables and cor-
responding domains, formally: L : Ci ! ðv i; diÞ.

Each variable, v i, can assume any real value in the correspond-
ing non-empty domain di. The constraint ci 2 C is defined over a
pair ðv i; diÞ through a label function l � L. In the process of finding
a satisfiable solution to a CSP, different values are assigned to the
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