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a b s t r a c t

Orthopaedic implants made of titanium alloy such as Ti-30Nb-10Ta-5Zr (TNTZ-30) are biocompatible and
exhibit nonlinear elastic behavior in the ‘small’ strain regime (Hao et al., 2005). Conventional material
modeling approach based on Cauchy or Green elasticity, upon linearization of the strain, inexorably leads
to Hooke’s law which is incapable of describing the said nonlinear response. Recently, Rajagopal intro-
duced a generalization of the theory of elastic materials (Rajagopal, 2003, 2014), wherein the linearized
strain can be expressed as a nonlinear function of stress. Consequently, Devendiran et al. (2016) devel-
oped a thermodynamically consistent constitutive equation for the generalized elastic solid, in order to
capture the response of materials showing nonlinear behavior in the small strain regime. In this paper,
we study the response of a long cylinder made of TNTZ-30 with non-circular cross section subjected to
end torsion. An explicit form of the constitutive equation derived in Devendiran et al. (2016) is used to
study the response of the cylinder. The cross-section is discretized with quadratic serendipity polygonal
elements. A novel one point integration rule is presented to compute the corrected derivatives, which are
then used to compute the terms in the stiffness matrix. Unlike the conventional Hooke’s law, the results
computed using the new constitutive equation show stress softening behavior even in the small strain
regime.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Presently, the orthopaedic implants are made of stainless steel
and alloys of cobalt and titanium such as Co-Cr and Ti-6Al-4V.
Vanadium present in Ti-6Al-4V is known to be toxic to the human
body and the present effort is to find a more biocompatible tita-
nium alloy using non-toxic elements such as Nb, Ta and Zr. The
Young’s modulus of the alloys that are currently in use are much
higher than that of the cortical bone, the bone’s being in the range
of 10–30 GPa [5]. The implants made of such alloys tend to support
a larger stress in comparison to the bone resulting in bone atrophy
[6], which eventually leads to the loosening of screws fastening the
implants. Therefore, it is imperative that the modulus of the
implant matches that of the bone. Recently developed non-toxic
titanium alloys such as Ti-30Nb-12Zr [7], Ti-24Nb-4Zr-7.9Sn [1],
Ti-29Nb-13Ta-4.6Zr [8] and Ti-30Nb-(8-10) Ta-5Zr [9] approaches
the modulus of the cortical bone and have good fatigue life. Sak-
aguch [10] studied the effect of the amount of Nb(Niobium) in
TNTZ alloy on the mechanical properties. For a 30% Nb content,

the cyclic tensile loading showed nonlinear elastic behavior up to
2% strain, the deviation from linearity beginning at strains as small
as 0.005. Interestingly, the other alloys of TNTZ undergoes defor-
mation induced martensitic phase transformation, which result
in permanent deformation, but the TNTZ-30 alloy undergoes pure
lattice distortion until 2% strain.

Linearization of classical theories of elasticity, namely Green or
Cauchy elasticity only leads to Hooke’s law, which is incapable of
describing the nonlinear response exhibited at ‘small’ strain levels.
Further, empirical models such as Ramberg-Osgood equation,
while it can describe the uniaxial nonlinear elastic behavior of
TNTZ-30 at small strain levels, cannot be used to describe the
mechanical response for a more complex boundary condition. In
order to alleviate such a shortcoming, Rajagopal et al. [2] intro-
duced a generalized class of elastic material, wherein an elastic
material is defined as the one which does not dissipate energy.
By following the seminal contribution of Rajagopal, a series of
papers were published [11,3,4]. Devendiran et al. [4] obtained a
general implicit constitutive equation for the generalized elastic
solid in terms of the Gibbs potential involving the second Piola Kir-
choff stress tensor. They also obtained a special constitutive equa-
tion wherein the linearized strain is a nonlinear function of the
Cauchy stress, which accurately describes the mechanical response
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of TNTZ-30. Bustamante et al. [12] studied a class of isotropic gen-
eralized elastic solids under small deformation. The nonlinear con-
stitutive equation predicts an increase in the gradient of strain
with an increase in the stress. Ortiz et al. [13,14] have solved a
few boundary value problems numerically using finite element
methods for a strain limiting constitutive equation.

The conventional finite element method (FEM) was adopted in
earlier studies and were restricted to simplex elements [12–14].
With advancements in mathematical software and seminal work
of Wachspress [15], Sukumar and Tabarraei [16], Dasgupta [17]
to name a few, and the recent drive from the computer graphics
community [18–21], the discretization of domain and approxima-
tions over arbitrary polytopes is now feasible for practical applica-
tions. The use of polygonal elements (elements with more than
four sides in two dimensions) relaxes the constraint on the mesh
topology and has opened up a new area of finite elements called
‘polygonal finite elements’. For a comprehensive overview of the
construction of approximation functions over arbitrary polytopes,
interested readers are referred to [22,23], and the references
therein. The major objectives of the paper are the following:

� To study the torsional behavior of non-circular shafts made of
TNTZ-30, which finds applications in bio-medical implants
and shows nonlinear response even in small strain regime.
The explicit constitutive relation proposed in [4] is employed
for this study.

� To employ polygonal finite elements for spatial discretization.1

The conventional approaches, for example using triangular
quadrature to evaluate the terms in the bilinear-linear form
requires very high order quadrature rules, at least 13n integration
points, where n is the number of sides of the polygon. Here, we
propose a new one point integration scheme that requires only
n integration per polygon. The accuracy and the convergence
properties are discussed in the revised manuscript.

The nonlinear constitutive equation, the governing equations
and the boundary conditions are described in Section 2. Section 3
describes the solution procedure mainly focusing on the weak for-
mulation and the spatial discretization. We discuss the linear
smoothing technique for computing the corrected derivatives
along with the one point integration scheme and the Newton
method in subsections 4.1 and 4.2, respectively. The implemented
algorithm is described in Appendix A. In Section 5, we discuss the
numerical results for a classical boundary value problem and the
last section concludes the work.

2. Theoretical formulation

2.1. Kinematics

Consider an abstract body B, let X 2 B denote the position of any
point in the reference configuration jrðBÞ and let x 2 B be the cor-
responding position of the point in the current configuration jtðBÞ,
given as,

x ¼ v X; tð Þ; ð1Þ
where, v is the motion function which maps the points from the ref-
erence onto the current configuration. The deformation gradient is
given by,

F ¼ @v
@X

; ð2Þ

and the displacement field u is given by,

u ¼ x� X: ð3Þ
By taking the material derivative of the displacement field, the
Green strain is given by,

E ¼ 1
2

ruþruT þruTru
� �

; ð4Þ

where ru ¼ @u
@X ¼ F� I. When the strains are small i.e.

max kruk ¼ OðdÞ, where d � 1, we can neglect the higher order
terms ofru in Eq. (4) and can write the strain in linearized form as,

e ¼ 1
2

ruþruT� �
: ð5Þ

2.2. Constitutive equation

In this section, we give an overview of the constitutive equa-
tions derived within the implicit class of elasticity theory. For
detailed derivation and proof, interested readers are referred to
[4] and references therein. Consider a homogeneous, isotropic
body undergoing homothermal process. Bustamante [24] and Bus-
tamante and Rajagopal [12] proposed the existence of a scalar
potential WðTÞ for the implicit class of materials, such that,

e ¼ @WðTÞ
@T

: ð6Þ

For an isotropic material WðTÞ is a function of the invariants of the
Cauchy stress, T, i.e. WðIT; IIT; IIITÞ and take the following form [4]:

WðIT; IIT; IIITÞ ¼ 1þ b0

2

� �
trðTÞ þ b1

2
trðT2Þ

� b2

nb3
1þ b3trðT2Þ
� �

Eðn�2
n Þ �ð1þ b3trðT2ÞÞn=2
h i

;

ð7Þ
where Eðn�2

n Þ is the exponential integral, which is defined as:

Ea½z� :¼
Z 1

1

expð�ztÞ
ta

dt: ð8Þ

Upon substituting Eq. (7) into, Eq. (6), we have,

e ¼ b0 trTð Þ1þ b1Tþ b2 exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b3tr T2

� �r	 
n !
T; ð9Þ

where b0;b1; b2 , b3 and n are material parameters. There are restric-
tions on the sign of thesematerial parameters, i.e. ð3b0 þ b1Þ > 0 and
b1 > 0, hence b0 < 0 and b2;b3; n > 0. Here, b2;b3 and n are called the
softening parameters as there is a reduction in the stresses, as pre-
dicted by Eq. (9), when compared with a linearized elastic model.
Note that, when b2 ¼ 0, the above equation reduces to the general-
ized Hooke’s law which is applicable for linear elastic solids. This
is important because as we keep reducing the strain, even the non-
linear elastic material shows some linear behavior, so the constitu-
tive equation should be able to predict the linear response as well.
Also, as the strain increases within small strain regime, the exponen-
tial term of the constitutive equation becomes more dominant and
this predicts the deviation from the linear response. Devendiran
et al. [4] showed that Eq. (9) can also be derived from Gibbs poten-
tial, however, terms involving the product of T and e should be
ignored. For our analysis of stress response of the Titanium alloy,
we use the explicit constitutive equation given by Eq. (9).

2.3. Governing differential equations for torsion

In this section, we derive the governing differential equations
for a prismatic cylindrical member subjected to end torsion with
the constitutive equation described in the previous section (Sec-

1 Elements with arbitrary shapes provide flexibility in meshing and yields
improved accuracy as evident in the literature.
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