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This paper presents a numerical method to control the spurious deformation mode conventionally found
in a non-ordinary state-based peridynamic formulation. The proposed approach introduces a higher-
order approximation for a deformation gradient tensor in order to suppress oscillations from the zero-

energy mode. The results are compared to those determined by other available methods. The findings
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of this study well demonstrate that the proposed method provides highly effective solutions for control-
ling zero-energy modes in peridynamic models. Contrasting other available zero-energy control methods,
the proposed method remains robust for relatively large horizon sizes. The method is incorporated by
implicit weight functions in peridynamics.

Published by Elsevier Ltd.

1. Introduction

Nonlocal methods in computational solid mechanics have
recently gained popularity as an alternative method to the classical
continuum mechanics methods, such as the finite element method
(FEM). Peridynamics introduced by Silling [1] is one of the nonlocal
mesh-free methods which reformulate the classical continuum
mechanics by substituting the governing partial differential equa-
tions with integral equations. Therefore, it is considered that the
peridynamic equation of motion is valid everywhere despite the
presence of cracks and other discontinuities [2-9].

Peridynamics has undergone significant changes since first pro-
posed. When first introduced, so called bond-based peridynamics
(BBPD) only considered independent central interaction forces
between any pair of material particles. As a consequence of this
assumption, the bond-based method was restricted to a fixed value
of Poisson’s ratio (v = 1/4 for the 3D and 2D plane strain cases and
v = 1/3 for 2D plane stress cases) [4,6,8,10,11]. Due to this limita-
tion, BBPD had lost its generality and credence for modeling mate-
rial response such as plasticity. The non-ordinary state-based
peridynamics (NOSBPD) is a generalized form of peridynamics
which allows material particle bonds to carry forces in all direc-
tions. Therefore, the NOSBPD can represent material behavior with
any Poisson’s ratio [4,8,10,12-14]. Furthermore, the bond forces in
the NOSBPD are defined by stress tensors; therefore, the classical
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constitutive equations and failure criteria can be implemented in
the NOSBPD analysis framework [15-19].

However, computational problems related to the NOSBPD
include an instability problem, known as a ‘zero-energy mode’
mechanism [17,20]. It is mainly observed in regions with high
strain gradients. The term ‘zero-energy mode’ associated with ref-
erence to the Finite Element Analysis (FEA) refers to a nodal dis-
placement vector that is not a rigid-body motion, yet produces
zero strain energy. Instabilities arise because of weak-form ele-
ment formulation processes such as a the use of a low-order Gauss
quadrature rule. Certain higher-order polynomial terms vanish at
Gauss points, thus eliminating these terms from contribution to
the system stiffness [21,22].

In the context of peridynamics, the zero-energy mode is associ-
ated to a weak coupling of material particles with their surround-
ing particles and thus results in oscillations in the deformation and
stress fields. Various control methods have been proposed. For
example, introducing a viscosity term in the peridynamic equation
of motion or decreasing particle spacing size have relieved the
zero-energy mode oscillations [23]; however, another level of
effort is required to significantly reduce the undesired oscillations.
Several other methods have been developed by Littlewood [24],
Breitenfeld et al. [17], and Wu and Ren [25] to suppress the zero-
energy mode.

The zero-energy mode is also present in the other available
meshfree methods such as smoothed particle hydrodynamics
(SPH) and element-free Galerkin method (EFG). The meshfree
methods suffer from another stability problem known as “tensile
stability”. Although the tensile stability is beyond the scope of this
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study, it is worth understanding the background. The zero-energy
method in meshfree methods comes from ‘rank-deficiency’ in eval-
uating the integrals of weak forms due to a relatively small number
of integration points. Additional integration points were first intro-
duced to decrease the instability of the SPH by Dyka and Ingel [26],
and this method was extended for higher dimensions by Randles
and Libersky [27]. In the so called “stress point integration meth-
od”, additional slave points are embedded into particles created
in an existing particle arrangement. The slave or stress points are
only needed in evaluation of governing equations used in the weak
form, and all their field values are obtained through an interpola-
tion from the original particles. Belytschko et al. [28] illustrated
that the stress point integration method does not affect the tensile
instability but removes the instability due to rank-deficiency.
Rabczuk et al. [29] employed a modified stress integration method
to eliminate the rank-deficiency. They included the quadrature of
the Galerkin weak form over both original particles and stress
points. While the stress point integration method provides
improved stability over nodal integration methods, it is likely to
impair computational efficiency of the meshfree method, particu-
larly in a large structural analysis problem.

Introducing a supplementary term to the force vector-state,
which resembles the process of providing an artificial stiffness
for stability in the classical FEM, represents an extra coupling of
each particle with neighboring particles. Various forms for the sup-
plementary term have been provided by Littlewood [24] and Breit-
enfeld et al. [17], However, these solutions do not provide
resolutions to the fundamental problem; that is, they are mesh
(or particle spacing size) sensitive. Wu and Ren [25] introduced a
stabilized displacement field to control the zero-energy mode.
The stabilized displacement of each particle is determined by pro-
viding a weighted average displacement of all other particles and
yields reduced oscillations in the deformation field. This approach
eliminated the need for the spring coefficient required for the sup-
plementary force. However unfortunately, the oscillation problem
appears to remain in the strain and stress fields with the Wu and
Ren model [25].

In this paper, it is proposed to extend the first-order Taylor
approximation to higher-order in order to obtain approximate
deformation gradient tensor and to solve the nonlocal peridynamic
equations. The proposed scheme has been implemented in 1D and
2D problems with varying horizon sizes and discretization patterns
which are integral features of peridynamics. The proposed higher-
order formulation is naturally included in the weight function nec-
essary to define a deformation gradient tensor in the peridynamics
framework. Three example problems are studied herein to demon-
strate the capability of the proposed method for relieving the oscil-
lations conventionally found in the displacement and stress
solutions. A comparative study is performed for varying particle
spacing, horizon size, and weight functions. Through the examples
demonstrated in this study, it is demonstrated that the proposed
method is far more effective in suppressing the zero-energy mode
oscillations than existing methods described above. A nonlinear
elastic-plastic simulation is performed to illustrate the capability
of the proposed method as well as the considerably reduced oscil-
lations when the method is implemented in the peridynamics
analysis framework.

2. State of the research on suppressing spurious zero-energy
modes in peridynamics
2.1. Non-ordinary state-based peridynamics

The kinematics of peridynamics for a 2D body is illustrated in
Fig. 1. In peridynamics, a particle located at position X, interacts
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Fig. 1. A schematic peridynamic body.

with its surrounding particles within an area of influence, so called
‘horizon’ Hy, where ¢ is the horizon size. The position vector-state,
X(x' —X) = £ =X —X, also referred to as the ‘bond’ between two
particles X and X/, represents the relative position in the unde-
formed body, Bo. The deformation vector-state,
YX —X)=¢é+n =y —y, maps the bond, X{¢), in the deformed
body, B, where § = u’ — u is the relative displacement of particles
x and X'

In the NOSBPD, the steady-state equilibrium equations for par-
ticle x is given in Eq. (1) where b is the body force applied on the
particle x, and dVy is the volume of particle X'. The force vector-
state, T, can be obtained by Eq. (2), where w(¢) denotes an weight
function and ¢ = |¢| = |X' — X|. The stress tensor, g, is the first Piola-
Kirchhoff stress, and the shape factor, K, at particle x is defined by
Eq. (3). ® denotes the tensor product.

[ T =) =X (x — X))V +b(x) = O (1)
Hx

TX(X —X) = (8o K- (X —x) 2)
Kix) = [ @0 =x) @ (¢ - x)ldVa 3)

A nonlocal approximation of deformation gradient tensor, F, is
defined by Silling et al. [4] to formulate the classical continuum
mechanics’ constitutive equations in peridynamics.

Fo = | [ 0@y -)e (¢ - xidv| K @)

The small strain tensor for isotropic elastic materials is deter-
mined by € =1/2(F+F") —1, where the stress is obtained by
o = C: €, where C is the isotropic elastic moduli matrix; and I is
the identity matrix. To obtain the implicit solutions for a quasi-
static peridynamic equilibrium equation (Eq. (1)), an incremental
and iterative method is developed. For a virtual displacement state
of ou, the dynamic relaxation method is adapted to iteratively
update the displacement field, u, until ||du|| < &, where ¢ is a small
numerical cut-off. Dynamic relaxation is an explicit iterative
method for obtaining steady-state solutions [18,30,31]. This type
of dynamic relaxation method determines steady-state solutions
for a dynamic system by introducing fictitious mass and damping
matrices and is particularly effective for solving highly nonlinear
problems including geometric and material nonlinearities.

2.2. Available treatments for zero-energy modes

The spurious zero-energy mode oscillations in the NOSBPD
solutions are attributed to weak form integration in nonlocal
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