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a b s t r a c t

This paper describes the use of a quadratic manifold for the model order reduction of structural dynamics
problems featuring geometric nonlinearities. The manifold is tangent to a subspace spanned by the most
relevant vibration modes, and its curvature is provided by modal derivatives obtained by sensitivity anal-
ysis of the eigenvalue problem, or its static approximation, along the vibration modes. The construction of
the quadratic manifold requires minimal computational effort once the vibration modes are known. The
reduced-order model is then obtained by Galerkin projection, where the configuration-dependent tan-
gent space of the manifold is used to project the discretized equations of motion.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The use of large Finite Element (FE) models for nonlinear struc-
tural analysis is becoming a pressing need in several industrial
fields, as for instance the mechanical, aerospace and biomedical.
Nowadays, it is relatively easy to generate large models that
account for extremely detailed geometric features and material
distribution. However, such models are often of prohibitive size
and routine simulations to explore different load scenarios, geo-
metric layouts and material choice are severely limited. Among
other nonlinear effects, geometric nonlinearities mainly character-
ize thin-walled structural components that are typically employed
when high stiffness-to-weight and strength-to-weight ratios must
be achieved. The redirection of stresses due to non-infinitesimal
deflections causes peculiar behaviors as bending and torsion-
stretching coupling, buckling, snap-through and mode jumping
[1]. In this context, Reduced Order Models (ROMs) are paramount
to enable sound design and optimization activities. In a broad
sense, ROMs are low order realizations of the original model, often
referred as High Fidelity Model (HFM). This reduction is achieved
through a projection of the full model onto a Reduced-Order Basis
(ROB) which spans the subspace in which the solution is assumed
to lie.

An established method to obtain accurate ROMs by Galerkin
projection is the Proper Orthogonal Decomposition (POD) [2,3],
where the reduction basis is constructed using the solution

snapshots of the HFM. Albeit optimal in a sense, it bears the draw-
back of requiring the full solution. Nonetheless, it is meaningfully
applied in the so-called many-queries scenarios, for which the cost
of the full training simulations is justified. In a preliminary design
context, however, the resources required for such an approach
might not be available. In this case, it is desirable to build a ROM
not with the reliance on full simulations, but rather using certain
intrinsic characteristics of the underlying physical system, which
are usually available at a very small fraction of the computational
cost associated to such full simulation(s).

Modal truncation and superposition is a standard practice for
linear structural dynamics, as it enables the decoupling of the lin-
ear governing equation to readily assess the dynamic response.
However, a reduction based solely on Vibration Modes (VMs)
would perform poorly in the presence of geometric nonlinearities,
as they typically do not capture the relevant bending/torsion-
stretching coupling. This would require the inclusion of in-plane
displacement dominated fields in the basis. An appealing enrich-
ment to a ROB of few VMs is constituted by the Modal Derivatives
(MDs), which were originally proposed in [4]. These are computed
by differentiating the eigenvalue problem associated to small,
undamped vibrations with respect to the modal amplitudes. A sta-
tic version of their construction (i.e. neglecting the inertial terms)
enjoys computational advantages: the MDs thus obtained, are the
solutions of a set of linear systems where the coefficient matrix
is factorized only once and the right hand sides are symmetric
functions of the VMs.

In a reduced-basis approach, the MDs could be appended to a
ROB constituted by the dominant VMs. This approach leads to very
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accurate results [5,6]. Unfortunately, the number of MDs that can
be generated, grows quadratically with the size of the VMs basis
used to generate them, thereby severely hampering the efficiency
of the method. However, the MDs are in fact the curvature of a
quadratic manifold arising from the Taylor expansion of the phys-
ical displacement into the direction of the dominant vibration
modes. As such, the modal amplitudes associated to the MDs are
enslaved, in a quadratic fashion, to those of the VMs, and hence
do not require independent reduced unknowns for their descrip-
tion. This approach can often be supported by a sound theoretical
justification in examples which are characterized by a special
dichotomy in time scales, and corresponds to neglecting the iner-
tial forces associated to the fast dynamics of the system at hand
[7]. More specifically, the static MDs provide a second order
approximation to the underlying critical manifold in such exam-
ples [8]. This leads to the notion of the solution lying on a quadratic
manifold, parameterized by the amplitudes of the dominant VMs.
This idea already appeared in a static context when evaluating
the initial post-buckling response of thin-walled structures using
a perturbation approach [9,10], and, with a very similar frame-
work, in the computation of the backbone curves for nonlinear har-
monic responses [11].

The use and efficacy of such a Quadratic Manifold to construct a
ROM for dynamic applications remains unexplored and is the focus
of this work. In this work we propose a unified approach to con-
struct a ROM using a quadratic manifold comprised of VMs and
MDs. The classical notion of the Galerkin projection is extended
here to projection on a tangent, configuration-dependent space,
which is variationally consistent with the nonlinear mapping
between modal and full DOFs. Further, we test this approach on
a simple, illustrative example as well as a realistic, industrial struc-
ture and compare it with established reduction techniques.

It is well known that once a ROB has been constructed, signifi-
cant speed-ups could be obtained by equipping the ROM with one
of the many available hyper-reduction techniques, [12–16] which
aim at scaling the cost of evaluation of the reduced nonlinear term
down to the order of the number of reduced variables, and not that
of the original HFM. Regardless of the specific method adopted, the
accuracy of any ROM is determined by the choice of the associated
reduction subpace. To this effect, this paper focuses only on the
reduction subspace and its generalization to a curved manifold,
and computational speed-up will not be discussed here.

This paper is organized as follows. The generalization of the
Galerkin projection onto a nonlinear manifold is sketched in Sec-
tion 2. The construction of a MD-based linear manifold is discussed
in Section 3. The quadratic manifold is then introduced in Section 4.
Numerical results are presented and discussed in 5, and finally, the
conclusions are given in Section 6. The appendix describes the
comparison of the proposed approach with the static condensation
technique discussed in [23].

2. Model order reduction

The dynamical response of a structure to externally applied
loading is obtained by solving an Initial Value Problem (IVP). This
IVP is characterized by a system of second-order Ordinary Differ-
ential Equations (ODEs) usually resulting from the FE discretization
of the governing Partial Differential Equations (PDEs), and can be
written in the following form:

M€uðtÞ þ C _uðtÞ þ fðuðtÞÞ ¼ gðtÞ
uðt0Þ ¼ u0

_uðt0Þ ¼ v0;

ð1Þ

where the solution uðtÞ 2 Rn is a high dimensional generalized dis-
placement vector with the initial conditions u0 for displacements

and v0 for velocities given as inputs at initial time t0;M 2 Rn�n is
the mass matrix, C 2 Rn�n is the damping matrix, fðuÞ : Rn # Rn is
the nonlinear internal force and gðtÞ 2 Rn is the time dependent
external load vector. These ODEs are further discretized in time
using a suitable time integration scheme, resulting in a high-
dimensional, fully discrete, nonlinear system of algebraic equations,
to be iteratively solved at each time step with a Newtonmethod (for
example). This full solution bears a prohibitive computational cost
even for a single-query scenario, not to mention the case when
the time integration needs to be performed several times, e.g., to
explore different operational scenarios.

Fortunately, in structural dynamics applications, a relatively
small number of ”modal” coordinates are expected to govern the
system response. This is to say that, in general, the solution may
be assumed to evolve on a low dimensional manifold in Rn. In
other words, we seek a mapping C : Rn # Rm withm � n such that

uðtÞ � CðqðtÞÞ; ð2Þ
where C is a general nonlinear mapping and q 2 Rm is the reduced
vector of unknowns. The semi-discrete equations for dynamic equi-
librium in (1) can be written in the following variational or weak
form (time dependency is omitted for clarity purposes):

M€uþ C _uþ fðuÞ½ � � du ¼ g � du; ð3Þ
where du is an admissible variation in the solution u. By introducing
the lower dimensional approximation (2) into (3), we obtain

M€CðqÞ þ C _CðqÞ þ fðCðqÞÞ� � � dCðqÞ ¼ g � dCðqÞ: ð4Þ

Observing that the variation dCðqÞ is given by @CðqÞ
@q dq, and dq being

arbitrary, we finally obtain

PT
C M€CðqÞ þ C _CðqÞ þ fðCðqÞÞ� � ¼ PT

Cg; ð5Þ

where PC denotes the tangent subspace @CðqÞ
@q .

If the mapping function is chosen to be linear such that
CðqÞ :¼ Vq (where V 2 Rn�m is typically a basis spanning some
lower dimensional subspace in Rn in which the solutions is
assumed to live), the above treatment leads to the Bubnov-
Galerkin or simply the Galerkin Projection. The reduced ODEs can
then be simplified as

VTMV|fflfflffl{zfflfflffl}
~M

€qðtÞ þ VTCV|fflffl{zfflffl}
~C

_qðtÞ þ VTfðVqðtÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
~fðqðtÞÞ

¼ VTgðtÞ; ð6Þ

where ~M; ~C 2 Rm�m are the reduced mass and damping matrices,
respectively. For a linear system, one would have fðuÞ ¼ Ku
(K 2 Rn�n being the linear stiffness matrix), and a reduced stiffness
matrix ~K ¼ VTKV 2 Rm�m is also obtained.

The choice of projection basis V (or the mapping CðqÞ) is critical
in determining the accuracy of the reduced solution. The size of the
basis (or the reduced number of unknowns) is important in deter-
mining the speed-up in computation time. In further sections, we
consider the candidates for such linear and nonlinear mappings.

3. Linear manifold

The existence of an invariant subspace (or manifold) is a key
requirement for reduction of system (1), as described above. Upon
reduction over an invariant linear subspace, we refer to the reduced
solution to lie on a Linear Manifold. Finding a suitable invariant sub-
space is by nomeans trivial, if at all possible. In the linear mappings
context, the POD is a remarkably versatile and robust method.
However, one of its drawbacks is the need for training snapshots
of solution vectors which are obtained from a full nonlinear run.
Typically, a reduction basis constructed in such amanner is suitable
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