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a b s t r a c t

This paper presents a numerical analysis based on the finite element method to simulate blast-induced
hard rock fracture propagation. Three different approaches are compared: the extended finite element
method, with a cohesive zone model to represent the growth of fractures; the conventional finite element
method using a remeshing technique and based on the linear fracture mechanics; the element deletion
method to simulate a rock fragmentation process. The rock mass is a sound granite that remains linear
elastic right up the breakage. Two numerical examples are presented in order to discuss the advantages
and limitations of each approach.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rock blasting is generally carried out by drilling into a rock
mass, charging the blastholes and firing the igniters located in
cylindrical charges. The detonation waves propagate with high
velocities (between 2000 and 7000 m/s depending on the type of
explosive), which justifies the assumption that the overpressure
of the explosive gases begins to act on all points of the blasthole
walls simultaneously. The energy released in the explosion is con-
verted into two main forms that are responsible for rock fracturing,
creating new cracks and widening the already existing ones: blast-
induced stress waves (dynamic load) and the overpressure of the
explosive gases (quasi-static load). There is no clear indication on
how much energy is converted into stress wave energy, how much
is available as high-pressure gases and how much is lost to other
sources such as temperature increase, air blast and smoke. The
energy partition will depend on the type of explosive, with TNT
(trinitrotoluene) and like explosives classified as high in stress
wave and low in gas production, while ANFO (ammonium nitrate/-
fuel oil) and others are considered high in gas production and low
in stress wave energy [1].

The blast-induced P waves that travel out into the rock mass
provoke sudden increases in the normal compressive stresses
along the radial direction and normal tensile stresses in the tan-
gential direction. Crushing of the rock adjacent to the blast hole

occurs whenever the resulting compressive stresses exceed the
rock compressive strength and a system of radial fractures, ema-
nating from the drill hole, arises as consequence of the high tan-
gential tensile stresses. Since the problem geometry is generally
bounded by a free surface (a soil-air interface), compressive P
waves reflect back from the free surface as tensile P waves, provid-
ing an important contribution to the rock fracturing, in addition to
S waves generated by a modal conversion phenomenon [2]. These
reflected waves, by their turn, will give rise to new S and P waves
due to a multiple reflection mechanism that involves both the free
surface and the surfaces of the growing fractures.

The region of dense radial fracturing around the blast hole
extends to a distance that depends on the amplitudes of the stress
waves, the mechanical properties of the rock and the characteris-
tics of the explosive such as detonation velocity, type of contact
between the charge and the blasthole walls. Reports in the litera-
ture [3–5] suggest that when ANFO explosive is used this region
generally extends between 4 and 8 blasthole radiuses away. There
is not practical interest in using high-intensity explosives that will
generate very high pressures on the borehole walls. The crushing
and the radial fracturing of the nearby rock will consume energy,
but will only contribute with a very small volume of excavation,
besides producing unnecessary damage to the rock surfaces and
affecting the strength and stability of the remaining material.

Beyond the region of severe damage, some main fractures con-
tinue to grow around the blasthole perimeter. In the literature,
there is no agreement about the number of dominant fractures
but some numerical results [6,7] reported the existence of 8–12
dominant fractures around the blasthole when TNT explosive is
employed. The number of dominant fractures depends on the char-
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acteristics of the explosive, represented by the shape and duration
of the pressure pulse applied on the borehole walls [8].

The fracturing of rock masses can be numerically simulated by
the conventional finite element method (FEM) but changes in the
fracture topology with time will require remeshing of the entire
domain, a severe limitation for situations of fracture propagation
involving complex geometries. The use of adaptive remeshing
schemes may also be awkward to implement because of the large
computational burden and the consideration of multiple fractures
will make remeshing almost intractable and inapplicable.

The extended finite element method [9] (XFEM) is an alterna-
tive approach that is particularly useful for the approximation of
solutions with severe non-smooth characteristics in small parts
of the domain. The finite element space is enriched with discontin-
uous functions that give a greater accuracy and computational effi-
ciency to the numerical solution when compared to the
conventional FEM applications. Furthermore, the mesh is not
required to match the geometry of the fractures since they are
not physically represented. XFEM is a very attractive and effective
way to simulate the propagation of fractures along an arbitrary,
solution-dependent path that eliminates the need for remeshing.

This paper investigates the dynamic fracturing of a sound rock
mass, admitted as an isotropic and homogeneous material that
remains linear elastic right up the moment of breakage. The behav-
ior of hard rocks containing a large percentage of quartz closely
corresponds to this material behavior, such as granite. Three meth-
ods are compared in this research: the extended finite element
method (XFEM), the conventional finite element method (FEM)
using a remeshing technique and the element deletion method
that simulates the evolution of a rock fragmentation process.

Different types of numerical methods may be also useful to
investigate the dynamic fracture propagation in solids. Among
others, can be mentioned the molecular dynamic simulation [10],
meshfree methods [11], the discrete particle method [12] and a
version of the lattice model where a network of truss elements is
used in the zone where the fracture process is expected to take
place and a FEM element mesh may be considered in the surround-
ing areas [13].

The blasting effects on the rock immediately around the drill
hole (crushed zone) are ignored and fracture propagation is consid-
ered due to the blast-induced stress waves only. The initial stresses
existing near the blasthole are also neglected since the stress incre-
ments generated by the detonation are admitted much larger than
the original stress state.

The elastodynamic problem is formulated under plane strain
condition, an assumption that is approximately satisfied only at
the plane normal to the longitudinal axis of the cylindrical blast-
hole passing through its mid-length; a true three-dimensional sim-
ulation would have been very complex, lengthy and expensive for
the time being.

2. Extended finite element method

The main concept in XFEM is to enrich the usual finite element
space with additional degrees of freedom that allow fractures to
open and increase the accuracy of the approximation near the frac-
ture tip. The functions in the XFEM space have the general form
[14]:
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where fuig are the conventional interpolation functions, H(x) the
Heaviside function associated to the current fracture geometry,

fbig the enrichment degrees of freedom associated with fracture
separation away from the tip, fc‘kg the enrichment degrees of free-
dom associated with near-tip displacement and fF‘ðr; hg the asymp-
totic branch functions expressed in polar coordinates, from the
fracture tip, as:
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The sum over i in Eq. (1) is taken considering all the nodes in the
mesh while the set of nodes j over which the second sum is per-
formed contains all the nodes belonging to an element entirely
cut by the fracture. The set of nodes k is built in such a way that
it contains all nodes located within a certain distance from the
fracture tip [15,16].

XFEM requires additional degrees of freedom (enrichment) in
order to allow fractures to open. In a region separated by a fracture
into two pieces away from its tip, the enrichment is provided by a
Heaviside function defined to be 1 on one side of the fracture and
�1 on the other side. This technique is easy to implement in the
case of a single straight fracture but it is more complicated as
the geometry of the fracture becomes irregular. It has been shown
[17,18] that the discontinuity in the displacement field with the
Heaviside function is equivalent to the addition of an extra element
on top of an existing one, a method that has become increasingly
popular and is known as the phantom node method.

Consider an element with nodes n1, n2, n3, n4 (Fig. 1). The frac-
ture Cc divides the element domain into two complementary sub-
domains, XA and XB. In the phantom node method, a discontinuity
in the element displacement field is constructed by adding phan-
tom nodes (here labeled ~n1, ~n2, ~n3, ~n4) on top of the existing nodes.
The finite element is replaced by two new elements, referred to as
elements A and B. The connectivity of the overlapping elements is
[~n1, ~n2, n3, n4] for the new element A and [n1, n2, ~n3, ~n4] for the new
element B.

The elements do not shares nodes, and therefore have indepen-
dent displacement fields. Both elements are only partially active;
the active part of element A is denoted by XA and the active part
of element B by XB. The displacement uðxÞ of a point with coordi-
nates x is computed with the standard finite element interpolation
functions fuðxÞg and the integrations are carried out considering
either the subdomains XA or XB depending on the location of the
point with respect to the fracture. Closure of the fracture tip is
enforced when no phantom nodes are added on the element
boundary that contains the tip; thus, the overlapping elements
do share nodes and their displacement fields are not completely
independent. Since the interpolation functions associated to the
enriched elements are the same as for the intact elements, the
phantom node method is easy to be implemented, being available
in several commercial FEM solvers [20,21].

While XFEM is suitable for additional enrichment of the dis-
placement field around the fracture tip to capture the singular field
(third term of Eq. (1)), the method of phantom nodes is only appli-
cable to model cohesive fractures, where the singularity in the
stress field is removed due to the presence of a cohesive traction.
The discontinuity generally grows elementwise, with the fracture
tip located at an element boundary, although variations in the
phantom element method may admit the tip inside the finite ele-
ment [22].

In the cohesive zone model [23–25] the process region is admit-
ted as an extension of the fracture length up to a point called ficti-
tious fracture tip (or mathematical crack tip) in which a specific
constitutive law is considered in order to relate stress decreases
with increase in fracture opening. The real fracture tip (or physical
fracture tip) is the point on the fracture surface where there is no
stress and the normal opening is bigger than the critical opening.
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