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a b s t r a c t

The challenge of determining response and reliability statistics of large-scale structural systems under
earthquake induced stochastic excitations is considered where the source load data records are incom-
plete. To this aim, a compressive sensing based framework in conjunction with an adaptive wavelet basis
is presented for reconstructing the samples with missing data and estimating the underlying process EPS.
In this regard, novel insights are provided whereas certain conceptual, numerical, and practical imple-
mentation aspects of the technique are presented in detail. A numerical example pertaining to the
stochastic response and reliability analysis of an eight floor reinforced concrete building structural sys-
tem demonstrates the effectiveness of the proposed methodology.

� 2016 Published by Elsevier Ltd.

1. Introduction

Numerical simulations for the analysis of structural systems
subject to random dynamic excitations require realistic stochastic
models of the system excitation processes. Such systems may be
highly sensitive to the nature of these excitations and so simula-
tion accuracy is dependant upon a reliable excitation process
model.

A reliable spectral model providing frequency dependant infor-
mation can be of significant importance in investigating the
response of an engineering system to stochastic input such as
earthquakes. Further, spectral models may be utilized for generat-
ing stochastic process records, fittingwith the frequency dependant
statistics of the givenmodel, for use in numericalMonte-Carlo anal-
yses e.g. [1–3]. However, a basic spectral model such as that based
on a non-windowed discrete Fourier transform (DFT) may only
describe a stationary process, i.e. one in which the spectral content
does not change over time. This assumption of stationaritymay give
a poor approximation of the true process, especially in the case of
earthquake excitations in which the frequency content can change
dramatically over their duration. Hence, in many cases, realization
of time-dependant properties of stochastic processes is also

considered central to defining reliable spectral models. In this
regard, the concept of the evolutionary power spectrum (EPS)
[4,5] provides an appealing model for capturing the statistics and
the time-varying frequency content of the underlying non-
stationary stochastic processes. Further, they can be used as a basis
for joint time-frequency system response analysis [6,7], or efficient
stochastic simulation utilizing advanced Monte Carlo techniques.

In an ideal scenario, such a model could be avoided entirely in
the case where extremely large data banks of real recorded excita-
tion processes of interest were available. Unfortunately, particu-
larly in the field of earthquake engineering, this is seldom the
case. Instead, process models are often estimated, based partially
or entirely on a small set of relevant recorded processes. Numerous
approaches exist for EPS estimation based on time records includ-
ing short-time Fourier transforms, wavelet [8–10] & chirplet [11]
transforms. Harmonic wavelets [12,13] are concentrated on in this
paper due in part to their box-shaped frequency spectrum, ideal for
identifying specific bands of energy and for the fact that they con-
stitute an orthogonal basis, which is ideal for the compressive
sensing approach applied herein.

It is logical to assume that the more data upon which such a
model is based, the more statistically accurate/relevant numerical
simulation results are likely to be. As the available data may be
quite limited, it is important that it is utilized to the fullest extent,
which in some cases includes working with problematic data sets.
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In this regard, when analyzing real earthquake excitation data,
coupled with the problem of limited numbers of samples or shorter
than ideal sample lengths, is the potential major issue of missing
data. Practical reasons for having limited data include for example,
equipment failure (if a sensor becomes damaged, perhaps even as a
result of the process itself, data may be lost) and sensor threshold-
ing limitations (high fidelity sensors with a wide operational range
can be expensive, and so in some cases the equipment used to
record a process may not be able to capture extreme features).
Numerous other issues including sensor maintenance, bandwidth
limitations, usage & data acquisition restrictions as well as data
corruption may also lead to missing data.

Under these conditions, when working with limited and/or
missing data, standard Fourier techniques for spectral estimation,
will frequently demonstrate poor performance. Although there
exist many algorithms and procedures in the literature that pro-
vide spectral estimates in the presence of missing data, these alter-
natives come with certain drawbacks and often impose significant
assumptions on the statistics of the underlying stochastic process.
For instance, autoregressive methods may be applied under the
assumption that source time-histories are relatively long and that
the missing data are grouped [14,15]. Further, least-squares sinu-
soid fitting and zero-padded gaps [16–18] offer efficient solutions
for re-constructing the Fourier spectrum in the presence of missing
data but suffer, in general, from falsely detected peaks, spectral
leakage and significant loss of power as the number of missing data
increases. Similar issues are faced when applying these methods to
wavelet transforms in the case of EPS estimation, and specific
approaches for non-stationary signal reconstruction are uncom-
mon. However, recent developments have been made in the area
of EPS estimation subject to missing data including applications
of artificial neural networks [19] and compressive sensing (CS)
[20]. The latter is applied herein, utilizing the relative band-
limited nature of evolutionary earthquake spectra. To further
improve the spectrum estimation, the CS approach is applied in
conjunction with an adaptive basis re-weighting procedure, build-
ing on ideas introduced in [21], which is useful in the case where
process record ensembles are available.

The organization of this contribution is as follows. A brief intro-
duction to CS theory is provided in Section 2 with references to fur-
ther reading. Section 3 highlights the differences between the
methods applied herein and established CS theory. The novel adap-
tive basis re-weighting procedure for signal reconstruction from
multiple records is detailed in Section 4. In Section 5, discrete
orthogonal Harmonic Wavelets are introduced briefly, along with
commonly encountered practical wavelet transform issues, before
being set in the context of the CS-based reconstruction problem.
Section 6 deals with the estimation of ground excitation power
spectra from simulated earthquake records with various missing
data configurations for which response statistics and system relia-
bility of a large structural model subject to such excitations are
compared. The work closes with some conclusions and final
remarks.

2. Compressive sensing

CS [22,23] is a signal reconstruction method that is commonly
used in image processing and becoming a widely used tool in civil
and mechanical engineering. CS, when applied to missing data
problems requires several important assumptions to be made con-
cerning the nature of the process of interest. However, in many
problem cases, especially those related to environmental processes
(and in particular spectral representation of earthquake excita-
tions), these assumptions can be made with confidence. In the
group of missing data problems for which CS is applicable, signifi-

cant gains in spectrum estimation accuracy and computational
efficiency can be achieved over alternative reconstruction
methods.

2.1. CS background

The Shannon-Nyquist theorem states that a time-dependent
signal with maximum frequency f can be completely determined
when sampled at time intervals of f

2 or smaller. This maximum
sampling frequency is commonly known as the Shannon-Nyquist
rate. Compressive sensing is a signal processing technique that
allows for signal reconstruction even if the maximum frequency f
present in the signal is greater than half the signal’s sampling rate
[24].

2.2. CS requirements

For robust compressive sensing, several properties concerning
the source signal and transformation basis are required. Most
importantly the signal must be sparse in a known basis, and obey
properties of incoherence and restricted isometry (RIP). The last
two requirements are discussed in detail in any introductory text
on CS theory (eg. [25]). For clarity and completeness in notation
a brief description of sparsity is provided in the following
subsections.

2.2.1. Signal sparsity
For a sampled signal to exhibit sparsity in some known basis, it

must be possible to represent that signal with far fewer coefficients
than the number determined by the Shannon-Nyquist rate. A dis-
crete time signal, x may be viewed as an N by 1 column vector.
Given an orthogonal N by N basis matrix A in which the columns
Ai are the basis functions, x may be represented in terms of this
basis via a set of N by 1 basis coefficients y, i.e.,

x ¼
XN
i¼1

Aiyi; ð1Þ

The vector x is said to be K-sparse in the basis A if y has K non-zero
entries and K < N, i.e.,

x ¼
XK
i¼1

Aniyni ; ð2Þ

where ni are the integer locations of the K non-zero entries in y.
Hence y is an N by 1 column vector with only K non-zero elements.
Therefore,

jyjL0 ¼ K; ð3Þ
where j:jLp denotes the Lp norm defined as

jyjLp ¼
X
i

jyijp
 !1

p

: ð4Þ

The L0 norm used in Eq. (3) is defined as the limit of the Lp norm as
p ! 0. In general the L0 norm is the total number of non zero ele-
ments in a vector,

jyjL0 ¼
X
i

1 yi – 0
0 otherwise

�
ð5Þ

It is important to note that for real signals, it is highly unlikely that
they are exactly sparse in any orthogonal basis. Even a minimal
amount of random noise on top of an otherwise K-sparse signal will
produce non zero coefficients for all N. However, a large number of
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