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a b s t r a c t

This paper investigates the performance of the global collocation method for the numerical eigenfre-
quency extraction of 2-D elastic structures. The method is applied to CAD-based macroelements, starting
from the older blending function Coons-Gordon interpolation (based on Lagrange polynomials) and
extending to tensor product Bézier and B-splines. Numerical findings show equivalence between
Lagrangian and Bézierian macroelements, while a mass lumping procedure is proposed for the former
ones. Concerning B-splines, the influence of multiplicity of inner knots and the position of collocation
points is thoroughly investigated. The theory is supported by 2-D numerical examples on rectangular
and curvilinear structures of simple shape under plane stress conditions, in which the approximate solu-
tion rapidly converges towards the exact solution faster than that of the conventional finite element of
similar mesh density.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of CAD-based global approximation for the numerical
solution of partial differential equations (CAE: computer-
aided-engineering) is as old as the theory of computer-
aided-design (CAD) itself. It is well known that an industrial team
(at General Motors) under Gordon’s leadership, in early 1970s,
used blending function methods, based on the ideas put forward
in [1], to produce some interesting element families [2,3]. Although
this team presented the mathematical background for the common
description between the geometric model and the unknown
variable (CAD/CAE integration), unknown reasons (perhaps the
high computational cost) prevented further dissemination of this
excellent idea.

One decade later, E1-Zafrany and Cookson [4,5] also used Coons’
and Barnhill’s ideas for quadrilateral and triangular patches,
respectively, whereas Zhaobei and Zhiqiang proposed the use of
Coons’ interpolation for the analysis of plates and shells [6].

Nevertheless computational results concerning CAD-based
isoparametric macroelements (occupying a Coons patch ABCD)
were presented for the first time by Kanarachos, Deriziotis and
Provatidis [7,8] in 2D potential and elasticity (static and dynamic)
problems, where the so-called ‘‘C”-elements were successfully
compared with conventional finite elements and boundary ele-
ments of similar mesh density. For a detailed review (of over 160

references) on the use of CAD-based macroelements the reader is
referred to [9].

Summarizing some of the most important previous findings
concerning macroelements that occupy a 2D quadrilateral patch
ABCD or a 3D hexahedral block ABCDEFGH, in chronological corre-
spondence with the progress in CAD-theory (Coons, Gordon,
Bézier, B-splines and NURBS) (see, for instance, [10]), it has been
reported that:

(i) (Boundary-only) Coons interpolation is capable of creating a
broad family of arbitrary-noded elements that may be
equivalent to that of Serendipity type. For example, the
conventional 4- up to 8-noded 2D elements, as well as the
8- and 20-noded 3D elements can be directly derived
applying Coons interpolation [11–14].

(ii) Gordon-Coons (transfinite blending function) interpolation
when applied to a structured macroelement of which the
boundary and internal nodal points lay at the same normal-
ized (n, g) positions, degenerates to the classical Lagrangian
type finite element [14].

(iii) Coons-Gordon interpolation allows for dealing with a
(relatively) unstructured mesh of internal nodes. Using a
single quadrilateral macroelement, not only simple shapes
such as a rectangular or a circle can be treated, but also it
was possible to perform analysis until the complexity of a
pi-shaped domain (see, [14–16], among others). For more
complex shapes, domain decomposition using large
macroelements becomes necessary.
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(iv) For a given number of subdivisions per direction (x and y, or
n and g) along the sides of the patch ABCD, Coons-Gordon
interpolation allows for the construction of a large number
of alternative macroelements. The two main influencing fac-
tors are:
a. The choice of blending functions and
b. The univariate interpolation along the four external sides

of the macroelement as well as along its so-called ‘‘inter-
boundaries” [17]. For the completeness of the paper, some
basics are summarized in Appendices A and B.

(v) Bézier tensor product representation of surface geometry
allows also for a global interpolation of the variable, u,
within a patch. Since Bézier (Bernstein) polynomials share
the same functional space with Lagrange polynomials, i.e.
the classes fnng and fgng, a CAD-based isogeometric solution
is identical with an isoparametric solution based on Lagran-
gian type polynomials [18].

(vi) B-splines tensor product representation of surfaces is an
‘‘analogue” to the Lagrange tensor product interpolation, in
the sense that univariate Lagrange polynomials are merely
substituted by B-splines in both directions. Its applicability
in conjunction with Galerkin-Ritz formulation has been
summarized by Höllig [19]. An extension of this theory is
the dominating NURBS-based isogeometric analysis (shortly
IGA) [20].

(vii) Barnhill interpolation within triangular patches is capable of
producing relevant macroelements. For example, conven-
tional three - and six-noded triangular elements can be
easily derived applying Barnhill interpolation (see, [9]),
whereas this interpolation has been applied in conjunction
with Bézier patches [21].

As a general remark, despite the elegant formulation of the above
CAD-based interpolations, even in B-splines (which are character-
ized by compact support) the computer effort is sometimes compa-
rable or even higher than what the conventional FEA requires. For
this reason, in 2005 it was proposed to preserve the CAD-based
approximation but use a global collocation method instead of the
time consuming Galerkin-Ritz formulation [22, p. 6704]. Relevant
works in 2D structures concern Poisson equation [23,24], elastostat-
ics [25], and acoustics [26]. Early studies in 1-D elastodynamics are
[27,28]. In the framework of Lagrange polynomials applied to the
aforementioned 1-D problems, it was shown that the lumped mass
can be easily set equal to the identity matrix when the nodal points
are put at the non-uniform position of Gauss points [28].

Within this context, this paper continues extending previously
published ideas, from 1-D to 2-D elastodynamics. A preliminary
report in 2010 by Filippatos [29] concerning circular and rectangu-
lar structures under plane stress conditions, for both Dirichlet and
traction-free boundary conditions, shows that, global collocation in
conjunction with Lagrange polynomials leads to acceptable results.
This paper substantially extends the latter report and is structured
as follows:

First, uniform interpolation based on Lagrange-polynomial ten-
sor products is used to interpolate either of displacement compo-
nents (ux or uy) as well as the geometry [x(n,g) or y(n,g)]. Using
Dirichlet and Neumann (traction-free) boundary conditions, sev-
eral versions of global collocation (nodal collocation, orthogonal
collocation as well as images of Demko’s and Greville’s abscissae)
are thoroughly tested. Orthogonal collocation refers to collocation
points located at several positions such as those used in Gaussian
quadrature, also the roots of Chebyshev polynomials (of first and
second kind). Furthermore, a previous technique for mass lumping
is successfully transferred from 1-D [28] to 2-D Lagrange-based
collocation problems.

Second, a Bézier tensor product is introduced for both the
geometry and displacement representations. Investigation is per-
formed to determine whether the numerical solution using Bézier
formulation is identical with that which is obtained using a uni-
form mesh of the abovementioned Lagrange-polynomial tensor
product interpolation.

Third, B-splines tensor products are tested. Particular attention
is paid on the handling of corners. The role of multiplicity of inner
knots in conjunction with several alternative sets of collocation
points is investigated.

Fourth, the above results based on the global collocation are
compared with the conventional bilinear FEM as well as with the
Galerkin-Ritz formulation based on the same global shape func-
tions with those used in the global collocation schemes, for the
same multiplicity of inner knots.

2. One-dimensional shape functions

This section refers to either of the Cartesian (x- and y-) direc-
tions, or even the curvilinear n- and g-directions (along the sides
AB and DA, respectively, of a patch ABCD). Below, n corresponds
to either of the subdivisions nn or ng, whereas the corresponding
normalized domain is ½0;1�.

Given the breakpoints x0; . . . ; xn, where x0 � 0 and xn � 1,
among several alternative interpolations, in this paper we focus
on the following.

I. Lagrange polynomials

Lj;nðxÞ ¼ ðx� x0Þ . . . ðx� xj�1Þðx� xjþ1Þ . . . ðx� xnÞ
ðxj � x0Þ . . . ðxj � xj�1Þðxj � xjþ1Þ . . . ðxj � xnÞ ð1Þ

II. Bezier (Bernstein) polynomials

Bi;nðxÞ ¼
n
i

� �
xið1� xÞn�i ¼ n!

i!ðn� iÞ! x
ið1� xÞn�i ð2Þ

III. B-Splines

We start with the abovementioned breakpoints,

fxbg ¼ ½x0; . . . ; xn�; ð3Þ
and then we introduce the knot vector fVg:
fVg ¼ ½v0; . . . ; vm�; ð4Þ
which highly depends on the chosen multiplicity k of internal knots
(usually single, double, etc.), as follows:
� Multiplicity k = 1:

fVgk¼1 ¼ x0; . . . ; x0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

; x1; x2; . . . ; xn�1; xn; . . . ; xn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

264
375 ð5Þ

� Multiplicity k = 2:

fVgk¼2 ¼ x0; . . . ; x0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

; x1; x1|fflffl{zfflffl}
2

; x2; x2|fflffl{zfflffl}
2

; . . . ; xn�1; xn�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2

; xn; . . . ; xn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

264
375; ð6Þ

and so on.
It is noted that:

� the maximum allowable multiplicity is k = p � 1.
� In all cases, Cp�k -continuity is ensured.

Therefore, Eqs. (5) and (6) and so on, lead to the unified
relationship:

m ¼ 2ðpþ 1Þ þ kðn� 1Þ � 1; k ¼ 1;2; . . . ð7Þ
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