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a b s t r a c t

In this paper, a general elasticity solution for the axisymmetric bending of a linearly elastic annular plate
is used to derive an exact finite element for such a plate. We start by formulating an interior plate prob-
lem by employing Saint Venant’s principle so that edge effects do not appear in the plate. Then the elas-
ticity solution to the formulated interior problem is presented in terms of mid-surface variables so that it
takes a form similar to conventional engineering plate theories. By using the mid-surface variables, the
exact finite element is developed both by force- and energy-based approaches. The central, non-
standard feature of the interior solution, and the finite element based on it, is that the interior stresses
of the plate act as surface tractions on the plate edges and contribute to the total potential energy of
the plate. Finally, analytical and numerical examples are presented using the elasticity solution and
the derived finite element.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is relatively easy to derive general closed-form solutions for
the axisymmetric bending of linearly elastic circular Kirchhoff,
Mindlin and Levinson plates [1–3]. Furthermore, the analytical
solutions may be used to develop exact, locking-free plate finite
elements [4–6]. Closed-form elasticity solutions that relax the
kinematic and constitutive assumptions of the aforementioned
conventional plate theories, however, are not that well-known;
the only solution found in standard textbooks is the one for a uni-
formly loaded simply-supported solid circular plate [7,8]. Thus, it
comes as no surprise that exact finite elements for the axisymmet-
ric bending of circular plates founded on closed-form elasticity
solutions do not exist. In this paper, we develop such an element
by using a suitable general elasticity solution.

The exact elasticity solution for the uniformly loaded simply-
supported circular plate [7] is in fact an interior solution that
excludes all edge effects by virtue of Saint Venant’s principle.
When a full solution is of interest, the most general state of stress
within a linearly elastic, isotropic, homogeneous plate can be
decomposed into three parts: (1) interior state, (2) shear state,
and (3) Papkovich–Fadle state [9–11]. Detailed, general 3D elastic-
ity solutions for plates which account for all three states have been
given by several authors [12–17]. The shear and Papkovich–Fadle
states are indeed predominantly related to edge effects, whereas

the interior state represents the conventional ‘‘plate theory part”
[9]. We use the general interior solution of Piltner [16], obtained
by using displacement potentials, to derive an exact finite element
for the axisymmetric bending of circular plates. General interior
elasticity solutions derived using the Airy stress function have
been recently used to develop finite elements for plane beams in
a likewise manner [18,19].

The distinction between the three different stress states is
highly important due to the fact that if our plate consists solely
of the interior state, the interior stresses of the plate act as surface
tractions on the lateral edges of the plate and, thus, they contribute
significantly to the total potential energy of the plate. It is com-
monplace not to account for this property in energy-based treat-
ments of plate theories founded exclusively on interior behavior.
Therefore, the energy-based formulation of the plate finite element
to be presented herein is fundamentally different from the conven-
tional practices because we take the work due to the interior stres-
ses on the plate edges properly into account. Although the present
study is limited to linearly elastic, isotropic, homogeneous plates
that undergo small deformations, the employed interior methodol-
ogy is expected to find wider application in the study of engineer-
ing plate theories.

The remainder of this paper is organized in the following way.
In Section 2, an interior problem is formulated for a circular plate
and the implications of the interior definition are discussed. In Sec-
tion 3, the general elasticity solution to the formulated problem is
studied. Using mid-surface variables formed from the solution, an
exact axisymmetric annular plate finite element is formulated in
Section 4 both by force- and energy-based methods. A variety of
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analytical and numerical examples are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2. Interior problem formulation

2.1. Boundary conditions

A linearly elastic, isotropic, homogeneous annular plate under a
rotationally symmetric transverse load p is shown in Fig. 1. The
thickness of the plate is h and the outer and inner radii of the plate
are a and b, respectively. The stress boundary conditions on the
upper and lower faces of the plate read

rzðr;�h=2Þ ¼ �p; rzðr; h=2Þ ¼ 0; srzðr;�h=2Þ ¼ 0: ð1Þ
The boundary conditions are introduced in a strong (pointwise)
sense for the upper and lower faces. On the inner and outer lateral
edges of the plate the tractions are specified through stress resul-
tants as suggested by Fig. 1 and, thus, the boundary conditions on
the lateral edges are imposed only in a weak sense [8]. The stress
resultants per unit length are calculated from the equations

Mr ¼
Z h=2

�h=2
rrzdz; Mh ¼

Z h=2

�h=2
rhzdz; Qr ¼

Z h=2

�h=2
srzdz; ð2Þ

where MrðrÞ and QrðrÞ are the radial bending moment and shear
force, respectively, and MhðrÞ is the tangential bending moment.
The positive directions of the radial stress resultants are given in
Fig. 1.

The replacement of the strong stress boundary conditions along
the plate edges by the statically equivalent weak boundary condi-
tions (stress resultants) implies that all detailed, exponentially
decaying edge effects of the plate are eliminated by virtue of Saint
Venant’s principle and only the interior solution of the plate is
under consideration. The general homogeneous solution by Piltner
[16] to the formulated interior plate problem for stress-free faces
will be studied in Section 3. A uniformly distributed load will be
added as the particular contribution to the solution.

2.2. Boundary layer and implications of the interior definition

Let us consider the solid circular plate with a boundary layer
shown in Fig. 2. If pointwise boundary conditions were to be
imposed on the outer edge of the boundary layer at r ¼ a0, the
detailed distributions of the resulting stresses would bring about
edge effects which decay exponentially towards the interior of

the plate. As a rule of thumb in isotropic cases, the boundary layer
is as thick as the plate itself, that is, the thinner the plate is, the
weaker the edge effects are. Studying a plate which consists only
of an interior part means that the boundary layer has been
removed. This amounts to fully-developed interior stresses being
active all-over the plate at hand, including the lateral plate edge,
where they act as surface tractions. In the case of an annular plate,
an analogous discussion may be extended to the inner boundary
region.

The key feature of the interior plate definition is that the inte-
rior stresses acting as surface tractions contribute to the total
potential energy of the plate which reads

P ¼ U �Wp �Ws ð3Þ
where the strain energy for an annular plate is

U ¼ p
Z a

b

Z h=2

�h=2
rðrr�r þ rh�h þ rz�z þ srzcrzÞdzdr ð4Þ

and the external work due to a uniformly distributed load p ¼ p0,
which is of interest to us in the following sections, is given by

Wp ¼ 2p
Z a

b
rp0Uzðr;�h=2Þdr: ð5Þ

The work by the surface tractions due to the interior stresses on the
outer and inner lateral edges of the interior plate is given by

Ws ¼ 2pa
Z h=2

�h=2
½rrUr þ srzUz�ða; zÞdz

�2pb
Z h=2

�h=2
½rrUr þ srzUz�ðb; zÞdz: ð6Þ

where Urðr; zÞ and Uzðr; zÞ are the displacements in the directions of
r and z, respectively.

3. General interior elasticity solution

3.1. Homogeneous solution

Starting from Piltner’s [16] solution for a rectangular plate, the
general interior solution for a linearly elastic, isotropic,

Fig. 1. Axisymmetric annular interior plate under a rotationally symmetric
transverse load p on the upper face. The positive directions of the stress resultants
and rotation /r on the outer edge are shown.

Fig. 2. Solid circular plate consisting of an interior part and a boundary layer. When
only the interior plate is studied, stresses rr and srz do work on the plate edge.
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