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a b s t r a c t

An efficient numerical method for computing the dynamic responses of periodic structures is proposed.
Efficiently solving a system of linear equations is a key issue for computing the dynamic response of a
large-scale structure. Based on the periodic properties of a structure and using condensation technology,
the system of linear equations that corresponds to the periodic structure is reduced to a small-scale sys-
tem of linear equations. Based on the Woodbury formula, the solution for the small-scale system of linear
equations is obtained by solving a new system of linear equations whose coefficient matrix corresponds
to a cycle periodic structure. Using group theory, the new system of linear equations is efficiently solved.
Superior efficiency is achieved because the scale of the system of linear equations for the entire structure
is significantly reduced and the coefficient matrix for the new system of linear equations can be con-
verted into a block-diagonal matrix using group theory. Numerical examples are presented to illustrate
the high efficiency of the proposed method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A periodic structure consists of a number of identical structural
components (unit cells) that are repeated in one, two or three
directions to form a complete system, such as a beam lattice
[1,2], periodic beam structures [3,4], cellular solids [5], periodic
composite structures [6–8], and photonic [9] and phononic
[10,11] crystals. The theoretical studies and applications of the
periodic structures have aroused substantial concern among
research institutions and scholars all over the world.

The wave motion and propagation are very important aspects
for the periodic structures. In this area, it is mainly concentrated
on the dispersion relations and the scattering analysis of the peri-
odic structures. The dispersion relation has attracted the attention
of many scholars. Tassilly [12] derived the dispersion relation
between wavenumber and frequency for a class of non-uniform
periodic elements. Gavric [13] used the concepts of cross-section
modes and finite element method to calculate the dispersion rela-
tion for an free rail. Using the transfer matrix method and Floquet’s
theorem, Shen and Cao [14] derived a dispersion relation for acous-
tic wave propagation in a periodic layered structure. For the infi-

nite two-dimensional periodic lattices, the dispersion curves
were obtained by solving the eigenvalue problem for wave propa-
gation [15]. By studying the wave behavior in periodically simply
supported beam and periodic frame structures, Sonekar and Mitra
[16] analyzed the dispersion relation for the periodic structures.
Through analysis of the elastic wave propagation in one-
dimensional periodic elastic rod structure and two-dimensional
periodic elastic beam structure, Tian et al. [17] derived the disper-
sion relation between Bloch wave vectors and eigenfrequencies.
Trainiti et al. [18] investigated the effects of periodic geometric
undulations on the dispersion properties of one-dimensional and
two-dimensional elastic structures. Meanwhile, the scattering
analysis has also received much attention. Vonflotow [19] showed
the scattering behavior of the junction of the Timoshenko bending
model and the periodic torsion model. Cai and Lin [20] analyzed
wave scattering in generic structural networks. By studying the
propagation properties of flexural wave in the periodic beam on
elastic foundations, Yu et al. [21] designed and calculated Bragg
scattering gap. For analyzing the scattering in infinite periodic
structures, Petersson and Jin [22] proposed a new two-
dimensional time domain finite element method formulation.

Dynamic vibration is another important aspect for the periodic
structures. In this area, it is mainly concentrated on the energy
band and dynamic responses of the periodic structures. Because
the band gap of periodic structure could be exploited in devices
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with widespread application in engineering, it has been received
much attention. Schmidt and Kauf [23] computed the band struc-
ture of two-dimensional photonic crystals. Olhoff et al. [24] com-
puted the maximizing frequency gaps of beam structures. Wang
et al. [11] investigated the wave band gaps in two-dimensional
piezoelectric and piezomagnetic phononic crystals. By employing
the Bloch-Floquet theorem, Xiang and Shi [25] determined the
flexural vibration band gaps in periodic beams. The vibration
band-gap characteristics of periodic rigid frame structures com-
posed of Timoshenko beams [26] and periodic Mindlin plate struc-
ture with two simply supported opposite edges [27] were studied.
Meanwhile, solving the dynamic responses also have been
attracted many attentions. Engels [28] investigated the dynamic
responses of infinite and semi-infinite periodic structures to har-
monic loads. Wu et al. [29] analyzed the dynamic behavior of peri-
odic plate structures. Cai et al. [30] applied a U-transformation
method to obtain dynamic solutions for periodic structures. Zhou
et al. proposed efficient numerical approaches for studying the
vibration of complex one-dimensional [31] and two-dimensional
[32] periodic structures. Hawreliak et al. [33] investigated the
dynamic responses of additively manufactured engineered lattice
materials. Luongo and Romeo [34] presented a modified version
of the traditional wave vector computational scheme for the
dynamic analysis of long undamped periodic structures. Using a
combination of wave and finite element approaches, Duhamel
et al. [35] presented a method for calculating the force responses
of periodic structures. Mencik [36] investigated a wave finite ele-
ment method for computing the low- and mid-frequency forced
responses of straight elastic structures. Based on a precise
integration method, Gao et al. proposed efficient algorithms for
computing the dynamic responses of one-dimensional [37] and
two-dimensional [38] periodic structures. Gao et al. [39] derived
an exact analytical solution for the dynamic response of a periodic
structure for which the unit cell consists of one mass and one
spring. Wu et al. [40] developed a subdomain precise integration
method for the dynamic responses of periodic structures.

For large scale periodic structures, improving the computational
efficiency of the numerical methods for solving the dynamic
responses is an essential issue. It is well known that the group the-
ory is an effective tool for improving the computational efficiency
for symmetrical structures and so has been widely used in science
and engineering [41–48]. Using the group-theoretic methods and
substructuring technique, Zhong and Qiu [41] analyzed the sym-
metric or partially symmetric structures subjected to arbitrary
loads. Based on the symmetry groups and representation theory,
Zingoni [42] proposed an efficient computational scheme for the
linear vibration analysis of high tension cable nets. Based on the
full symmetry properties of a structure, group representation the-
ory and Fourier method, the full stiffness matrix of a structure was
converted into the form of block diagonalization [43], and the sim-
ilar techniques was used to block-diagonalise the equilibrium
matrix of a symmetric structure [44]. The unsymmetrical (or
weakly symmetrical) spring-mass dynamic systems was trans-
formed into equivalent dynamic systems featuring maximum pos-
sible symmetry, and then the group theoretic procedure employed
to calculate all the eigenvalues of the systems [45]. Using the group
theory, the eigenvalue problems were decomposed into indepen-
dent subproblems due to the block diagonalized [46,47]. Zingoni
[48] showed that the group-theoretic approach enables consider-
able simplifications and reductions in computational effort. How-
ever, although the infinite periodic structure is translational
symmetry, but the periodic structure composed of finite unit cells
has no symmetric property, so the group theory cannot be applied
directly to the finite periodic structures.

This paper proposed an efficient algorithm for solving the
dynamic responses of one-dimensional and two-dimensional peri-

odic structures. The basic idea of the numerical algorithms for
computing the dynamic responses is to transform the dynamic
equations into a system of linear equations. Therefore, efficiently
solving the system of linear equations is a key issue for computing
the dynamic responses. Firstly, based on the periodic properties of
a structure and using condensation technology, the system of lin-
ear equations for the entire periodic structure is reduced to a
small-scale system of linear equations in this paper. Then, based
on the Woodbury formula, the solution of the small-scale system
of linear equations is obtained by solving a new system of linear
equations whose coefficient matrix corresponds to a cycle periodic
structure. Finally, using group theory, the new system of linear
equations is efficiently solved. Using the three technologies
enables an efficient algorithm to be proposed for solving the sys-
tem of linear equations. This algorithm leads to an efficient method
for computing the dynamic responses of periodic structures.

2. The basic equations

Assume that a structure is considered and that its stiffness,
mass and damping matrices are K, M and C， respectively. The
dynamic equation can be written as

M€uþ C _uþ Ku ¼ f ð1Þ

where f denotes the external force vector, and u, _u and €u denote the
displacement vector, velocity vector and acceleration vector,
respectively.

Many numerical algorithms, such as the Newmark method [49],
the generalized a method [50], the Bathe method [51,52], and the
central difference method [53], can be applied for solving Eq. (1).
For all methods, the basic idea is to transform Eq. (1) into the fol-
lowing system of linear equations

�Kut0þDt ¼ �f ð2Þ

where �K and �f denote the equivalent stiffness matrix and the equiv-
alent external force vector. Solving Eq. (2) gives the dynamic
responses of Eq. (1).

The main computational effort for solving the structural
dynamic responses comprises repeatedly performing the system
of linear Eq. (2). For periodic structures, the degrees of freedom
(DOF) of the entire structure is significant when it contains many
identical unit cells. Thus, it is very time-consuming for solving
the system of linear equations. Based on the characteristics of a
periodic structure, an efficient method is proposed in this paper
to solve the system of linear equations (2) using the Woodbury for-
mula and group theory.

Because all previously mentioned numerical methods are
required to solve Eq. (2), the Newmark method is used as an exam-
ple in this paper to explain the idea of the proposed method. For

the Newmark method, the equivalent stiffness matrix K
�
and equiv-

alent external force vector f
�
are [49]

K
�
¼ Kþ c0Mþ c1C

�f ¼ ft0þDt þMðc0ut0 þ c2 _ut0 þ c3€ut0 Þ þ Cðc1ut0 þ c4 _ut0 þ c5€ut0 Þ
ð3Þ

where ut0 , _ut0 and €ut0 are the displacement vector, velocity vector
and acceleration vector at t0, ft0þDt denotes the external force vector
at t0 þ Dt and c0–c5 in Eq. (3) are the parameters of the Newmark
method [49]. Then, the displacement vector ut0þDt at t0 þ Dt can
be obtained by solving Eq. (2), and the velocity and acceleration
vectors at t0 þ Dt can be obtained [49].
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