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a b s t r a c t

When some critical condition is reached at a material point of a solid body, a localized strain starts devel-
oping which makes the strain field discontinuous and highly accelerates local damaging of material. The
present paper addresses this kind of strain localization in spatial geometrically exact beams. Here we pro-
pose a new beam finite element formulation which accounts for softening of material by applying the
embedded strong strain discontinuity technology. The formulation is essentially an extension of the orig-
inal strain-based formulation, upgraded such to allow for detecting the onset of strain localization and to
introduce additional equations for evaluating singular strain peaks and jumps of displacements and rota-
tions at the localized section in further deformation. The consistency condition that the equilibrium and
the constitutive stress-resultants are equal is shown to be naturally suited for the implementation into
the discontinuous formulation. The condition for the onset of strain localization at a beam cross-
section is here related to the loss of uniqueness of the beam cross-sectional constitutive equations. If
the condition for a unique inverse is violated, two solutions are possible for cross-sectional strains. In
a subsequent deformation, one of the two solutions follows the softening regime of material. The discon-
tinuous increments in strains, displacements and rotations at the softening cross-section are obtained
from the equations of the structure supplemented by the consistency conditions of the softening
cross-section.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Softening often takes place in damaged heterogeneous materi-
als at some deformation. When an appropriate material and stress
dependent critical condition is reached at some material point of a
solid body during the subsequent deformation, a thin band of a
localized strain occurs in the softened material which further
accelerates local damaging of material. This physical phenomenon,
typically marked as the strain localization, can well be mathemat-
ically modelled, if the band is assumed to be a surface of zero width
and the strains taken to be peak-like discontinuous across the sur-
face. Such a singular discontinuity of strains occurs due to a local
loss of uniqueness of the solution. The proof that the strain soften-
ing rate-independent plasticity material implicates singular distri-
butions in the strain field was discussed in Simo et al. [1].

This interesting, although a rather complicated theoretical
problem of a large practical value has motivated a research com-
munity for long, in looking for stable, reliable and computationally

efficient numerical solution methods for solid bodies as well as for
beams, plates and shells.

Probably the simplest solution method first introduced by
Bažant et al. [2] employed a band finite element, specially designed
to simulate softening in the critical point. The method is successful
in the regularization of the singularity problem, but requires an
internal length scale in the constitutive model and is impractical
if the location of the critical point cannot be estimated in advance.
See, e.g. [3,4] for such a numerical formulation of a planar geomet-
rically exact reinforced concrete beam based on a high-order strain
interpolation in regular beam elements and on a constant-strain
band element in the localized zone, and Češarek et al. [5] for its
extension to space. This kind of finite element formulation is con-
sidered to be a member of a broad class of non-local continuum
models where the material response at a point is assumed to
depend on deformations of its finite neighbourhood [6–9]. Further
regularization techniques have been proposed, amongst which the
higher-gradient models introduce additional higher order terms in
the constitutive laws [10]; the Cosserat continuum techniques
involve the local rotations as independent kinematic variables
[11]; the smeared crack models where the energy dissipation asso-
ciated to strain softening is distributed over the volume of finite
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elements [12]. Each of these methods has its own advantages, but
the internal scale parameter of a constitutive model still seems to
remain a major problem. Another technique is the cohesive zone
model proposed by Needleman [13,14] where the discontinuities
propagate only along the element boundaries using special cohe-
sive elements. This model requires adaptive re-meshing tech-
niques. For a recent and a more detailed review of various
techniques, we refer to [15].

It appears that the embedded discontinuity approach has dom-
inated recently, see, e.g. Refs. [1,16–30], among many others. The
main idea of the embedded strong discontinuity approach is to
enhance the standard continuous strain field within a finite ele-
ment with a point-wise, peak-like discontinuous strain increment.
Such finite elements are then able to model the discontinuous nat-
ure of the localized strain and displacement fields at the element
level, preserving, simultaneously, the chosen degree of standard
interpolations for the continuous part of the strains or displace-
ments. After the discontinuous strain and displacement increments
are eliminated from the governing equations of a finite element,
the resulting element can be employed in finite element pro-
grammes in a standard way.

In the present paper we propose a new spatial geometrically
exact beam finite element formulation accounting for softening
of material, and apply the embedded strong discontinuity technol-
ogy. The formulation is essentially an extension of the original
strain-based formulation of Zupan and Saje [31] to include soften-
ing of material with emerging peak-like discontinuous strain fields
and their subsequent localization. The original formulation is
upgraded to allow for detecting the onset of strain localization,
i.e. finding the critical load level and spotting the critical cross-
section, and to introduce additional equations to obtain the strain
jumps at the localized section. Further details of the finite element
implementation and the solution procedure are given later on in
the text. We emphasize that the present formulation uses the
stress–strain relations of material fibre to compute current values
of stress-resultants as functions of strains; hence, the numerical
integrations of stresses over the cross-sections at integrations
points of the beam axis are required in each iteration step.

Finally, in order to demonstrate the computational behaviour of
the formulation of spatial geometrically exact beam-like frames in
a softening regime, we present comprehensive analyses of three
representative cases. Two of them deal with softening behaviour
of reinforced-concrete structures. Various results including stress
distributions over the localized cross-sections and the graphs of
the external force as a function of nodal displacements are dis-
played to show the results and the range of possible applications
of the present formulation.

2. Formulation of the spatial geometrically exact beam model
with discontinuous kinematics

2.1. Displacements, rotations and strains

The geometrically exact finite-strain beam theory reduces the
strain tensor field, continuously distributed over the beam volume,
to two strain vector fields associated with material points of the
beam axis [32]. These are the translational strain vector, cG, and
the rotational strain vector, jG. Their components, c1; c2; c3 and
j1; j2; j3 in the current ortho-normal body basis, G, of the rotated
cross-section represent, respectively, the axial and shear strains,
and the torsional and bending strains. The position of a material
point on the beam axis relative to the referential point on the axis
is described by the undeformed arc-length coordinate, here
denoted as x. From the virtual work principle it is derived that
the strain-related displacement vector, rg , of the beam axis, and

the rotational vector of the cross-section, #g , as well as their vari-
ations, drg and d#g , all being functions of x, satisfy the following
conditions:

dr0g xð Þ ¼ R xð ÞdcG xð Þ � r0g xð Þ � d#g xð Þ; ð1Þ
d#0

g xð Þ ¼ R xð ÞdjG xð Þ: ð2Þ

Here lower indices G and g mark, respectively, the vector basis to
which the particular vector components belong. g is a fixed-in-
space Cartesian ortho-normal basis with coordinates X;Y ; Z. In con-
trast the body basis, G, is fixed to the centroid of the cross-section
such that its current rotated position in space agrees with the cur-
rent position of the cross-section. Furthermore, as cross-sections
along the beam axis experience different rotations, the body basis
varies with x and thus generally differs at each cross-section. Body
base vectors are chosen such that base vector G1 is perpendicular to
the rotated cross-section, and base vectors G2 and G3 coincide with
the directions of the principal inertia axes of the cross-section. R is
the rotation matrix. It rotates the spatial (fixed) basis, g, onto the
deformed body basis G. The rotation matrix is parametrized with
the rotational vector #g . The prime (0) marks the derivative with
respect to x.

Integrating Eqs. (1) and (2) with respect to the variations gives
the relation between displacement, rotation and strain vectors:

r0g xð Þ ¼ R xð Þ cG xð Þ � c0G xð Þ� �
; ð3Þ

#0
g xð Þ ¼ T�T xð Þ jG xð Þ � j0

G xð Þ� �
: ð4Þ

The details of the derivation are presented in, e.g. [31,33,34]. In Eq.
(4) T denotes the transformation matrix operating between jG � j0

G

and #0
g [31,33,34]. Functions c0GðxÞ and j0

GðxÞ are arbitrary initial
strain vectors of the unloaded beam; they do not change during
deformation and are thus variational constants. In the numerical
examples that follow, we will assume that the beam is straight ini-
tially so that c0G ¼ ½�1;0;0� and j0

G ¼ ½0;0;0�.

2.2. Internal forces. Constitutive equations of the cross-section and
uniqueness of their inverse.

In beam theories the stress tensor field, distributed over the
beam volume, is replaced by the cross-sectional stress resultant
vectors, here denoted in the matrix form by NC

G and MC
G, and called,

respectively, the internal force and moment vectors, all having
their points of application at the beam axis. Their components,
NC

1 ; NC
2 ; NC

3 and MC
1 ; MC

2 ; MC
3, represent, respectively, the stress-

based axial and shear forces, and torsional and bending moments,
all with respect to the current rotated basis G of the cross-section.
The stress resultants are the work-complements to strain vectors
cG and jG, introduced in the previous section. As the components
of the stress tensor depend on the components of the strain tensor
through the constitutive equations of material, and as both tensors
vary over the cross-section in some given way, the cross-sectional
stress resultant vectors can be shown to depend directly on the
beam strain vectors. Because they describe the cross-sectional
behaviour rather than solely that of material, the relations between
the stress-resultant and strain vectors are called the ‘constitutive
equations of the cross-section’. They are functions of both the
stress–strain law of material and the shape of the beam cross-
section, and are here assumed in a rather general algebraic form:

NC
G xð Þ ¼ CN cG xð Þ;jG xð Þð Þ; ð5Þ

MC
G xð Þ ¼ CM cG xð Þ;jG xð Þð Þ; ð6Þ

where the components CN
i and CM

i ði ¼ 1;2;3Þ of vector functions

CN ¼ ½CN
1 ; CN

2 ; CN
3 �

T
and CM ¼ ½CM

1 ; CM
2 ; CM

3 �
T
are assumed to be at
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