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We consider a general nonlinear poromechanical model, formulated based on fundamental thermody-
namics principle, suitable for representing the coupling of rapid internal fluid flows with large deforma-
tions of the solid, and compatible with a wide class of constitutive behavior. The objective of the present
work is to propose for this model a time discretization scheme of the partitioned type, to allow the use of
existing time schemes - and possibly separate solvers - for each component of the model, i.e. for the fluid
and the solid. To that purpose, we adapt and extend an earlier proposed approach devised for fluid-
structure interaction in an Arbitrary Lagrangian-Eulerian framework. We then establish an energy esti-
mate for the resulting time scheme, in a form that is consistent with the underlying energy principle
in the poromechanical formulation, up to some numerical dissipation effects and some perturbations that
we have carefully identified and assessed. In addition, we provide some numerical illustrations of our
numerical strategy with test problems that present typical features of large strains and rapid fluid flows,
and also a case of singular transition related to total drainage. An example of challenging application
envisioned for this model and associated numerical coupling scheme concerns the perfusion of the heart.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, novel challenging applications such as cardiac model-
ing have required the introduction of general formulations cou-
pling porous flows and hyperelastic formulations, and compatible
with large displacements, finite strains and strong inertial effects
both in the solid and in the fluid. In this context, a general porome-
chanics formulation was proposed in [10] based on fundamental
thermodynamics principles, see also [41] where the same type of
model was subsequently considered. As inertia effects and large
displacements are considered, the final formulation is very similar
to the coupling of hyperelastic dynamics for the skeleton - i.e., the
solid constituent — with a conservative form of the so-called Arbi-
trary Lagrangian-Eulerian (ALE) formulation of the compressible
Navier-Stokes equations [15,33] set on the same domain, hence,
with a domain velocity given by the skeleton physical velocity.
The compressible analogy comes from the product of the fluid vol-
ume fraction with the fluid density that, together, play the role of a
varying fluid density. Finally, when compared with standard fluid-
structure interaction (FSI) problems, we have the additional dis-
tributed coupling term representing the interaction between the
two phases [6,13,14]. From this analogy, [10] introduced a time
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scheme with an energy balance at the time-discrete level inspired
from the work [32] initially devoted to classical fluid-structure
interaction problems. The proposed time scheme combined in a
monolithic formulation a mid-point energy-conserving extension
of the mid-point Newmark scheme and a second-order Crank-
Nicolson scheme for the fluid with an additional specific treatment
of the Darcy term discretization in order to respect the energy bal-
ance in the fluid-skeleton interaction. This scheme was proved in
[10] to be second-order accurate and unconditionally stable, simi-
larly to its initial fluid-structure counterpart in [32].

However, this scheme has some drawbacks when considering
its practical use in simulation software - in industrial codes in par-
ticular - as it implies the use of a Newton-Raphson solution proce-
dure on a monolithic fluid + solid formulation. Therefore, we
propose in the present article an alternative time discretization
inspired from state-of-the-art partitioned FSI time-schemes
[18,19,27]. Partitioned solvers aim at solving the interaction prob-
lem by coupling independent solvers for the fluid and the solid
[2,3,21,28,29,35]. Therefore, they are much more modular than
monolithic approaches and allow the use of existing legacy soft-
ware [30]. However, the computational efficiency of partitioned
approaches compared with a monolithic approach must be
assessed [4,8,27,28]. Hence, the question of monolithic versus par-
titioned approaches has already been raised in other specific
poromechanics formulations, typically with Darcy flows [34].
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As we aim at relying on a classical Newmark scheme for the
solid with an energy-conserving extension for general hyperelastic
laws [22,25], we set out in this article to propose our time-scheme
based on the recent partitioned FSI scheme of [1]. This scheme
combines a Newmark scheme for the solid [22] with an effective
Chorin-Temam projection scheme in the fluid [11,23,39]. The fluid
viscous sub-step, taking into account the convective-viscous
effects and the geometrical non-linearities, is treated explicitly.
Moreover, at each time step the projection sub-step is implicitly
coupled with the structure with Robin coupling conditions derived
from Nitsche’s interface method [7,36]. The specificity of this cou-
pling strategy is twofold. First, it allows to prove stability indepen-
dently of the added-mass effect typically present in blood flow
simulations, which in particular is known to compromise the sta-
bility of explicit coupling - time-marching - schemes, see [8]. Note
that this added-mass effect has also been evidenced in poroelastic
models with an impact that directly correlates with fluid fraction
[5]. Secondly, the coupling strategy of [1] is, to our best knowledge,
the only time scheme that allows for non-linear conservative time-
stepping within a 3D general solid, as opposed to the more direct
Dirichlet-Neumann semi-implicit coupling [19]. From this starting
point, we propose in the present article a partitioned scheme
adapted to the poromechanics formulation of [10], with an ade-
quate treatment of the additional fluid fraction variable, and a
specific treatment of the distributed coupling conditions. The
resulting scheme is proved to satisfy a discrete energy estimate,
hence, to be unconditionally stable. Compared with [1] from which
we draw the inspiration of our time scheme, our major contribu-
tions lie in

o extending this time scheme to our more complex case of a two-
phase poromechanical problem;

e establishing the discrete energy estimate with the total free
energy of the mixture, in a general nonlinear framework.

Furthermore, as our proposed method has the same algorithmic
complexity as that of [1], we can similarly expect very significant
gains in computational efficiency compared to a monolithic
approach, as already assessed numerically in [19], in particular.

The paper is organized as follows. In Section 2, we recall the for-
mulation of the general poromechanical model of [10] that we con-
sider, with the associated energy balance. Next, in Section 3 we
introduce our proposed partitioned time discretization scheme,
and we provide a detailed stability analysis of this time scheme
by establishing a discrete energy estimate. One ingredient of this
analysis is an adapted form of the so-called “geometric conserva-
tion law” [16,17,38,40], which in our case is shown to be satisfied
by construction, up to perturbations induced by spatial discretiza-
tion that we analyze in details. In Section 4, we provide some
implementation considerations, and several numerical illustrations
for representative test problems proposed in the recent literature
[9]. In addition, we present a test case in which we precisely mon-
itor the energy balance and quantitatively assess the various
sources of perturbations induced by spatial discretization. Finally,
we give some concluding remarks in Section 5.

2. Poromechanical formulation
2.1. Basic definitions

We consider the general poromechanical model proposed in
[10]. This is a two-phase mixture type model, in which a fluid
phase and a solid phase are assumed to coexist and interact at each
point, ¢ denoting the volume fraction of the fluid phase - also
called the porosity.

The solid phase is primarily described by the displacement field
Ys(&,t) defined at every point ¢ in the (fixed) reference domain @,
and at any time t in the time window considered. We will use the

corresponding velocity field
Ys — dt

The displacement field maps the reference domain Q° to the
deformed domain €, viz.

= 0ys(&, ).

teQx=E+ys(En),
and the associated deformation gradient tensor is
E=1+V.ys,

with determinant J = det F. We point out that J represents the local
change of volume of the global mixture, whereas the change of vol-
ume of the solid phase itself is given by J(1 — ¢)/(1 — ¢,), with ¢,
the fluid volume fraction in the undeformed configuration, and
we define J, =J(1 — ¢). We recall the definitions of the right
Cauchy-Green deformation tensor and of the Green-Lagrange strain
tensor, i.e., respectively,

C=FF e=1(C-)

The mass per unit volume of the solid phase in the reference config-
uration is denoted by p.

The internal fluid flow is represented by the velocity »¢ and
pressure p, both fields being naturally defined in the deformed
domain Q. The fluid is assumed to be incompressible, hence, the
fluid mass per unit volume p; is constant. The quantity m is defined
as the added fluid mass per unit volume of the reference configu-
ration, i.e.

m = p(J¢ — ¢y).

The fluid is assumed to be Newtonian, with the usual decomposi-
tion of the fluid Cauchy stress tensor into viscous and hydrostatic
contributions, i.e.

¢ = Oyis(¥r) — pl.

Recalling the classical transformation rule from the Cauchy
stress tensor to the second Piola-Kirchhoff stress tensor

L=JE-g-FT,

here written for the global stress tensors of the mixture, we will
denote by Xs the contribution of the solid in the second Piola-
Kirchhoff stress tensor Z, i.e.

I =X-¢JF" g - FT =%~ ¢Zys +¢pJC", (1)

with Xy = JE - gys - E7, see Section 2.4 below for more detailed
specifications of the constitutive laws.

2.2. Strong formulation

The strong form of the poromechanical model reads [10]

Peo(1 = do) G = Ve - (E-Z5) +pJET - Veo
kit - (w5 — 25) = peo(1 = o),

T s (pdd ) + Vx - (prd v @ pe(vr — v5)) — O
+0%ke - (v — v5) = V- (9 Guis) + $Vxp = préf. in @, (D)

J 6 Uped) + Vx - (pro(wr — v5)) = 0, inQ (0
(2)

inQ° (a)
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