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a b s t r a c t

A unified consideration of the computation of the local and global sensitivity of structural Power Spectral
Density (PSD) functions for random responses is conducted utilizing the Pseudo-Excitation Method
(PEM). Analytical formulae enabling the calculation of sensitivity of the first and the second order with
respect to chosen parameters are derived on the basis of an efficient direct algebraic method. The analyt-
ical formulae are compact, devoid of modal truncation problem and efficient to program. Also, global sen-
sitivity analysis is implemented analytically by incorporating Gaussian process model to provide an
approximate relationship between PSD functions and the sensitive parameters. It is investigated how
scattering of parameters could induce variation in response spectra from a more comprehensive view-
point. The validity and efficiency of the presented methods are illustrated using a numerical example.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Power Spectral Density (PSD) functions are viewed as important
physical quantities for structures subjected to stochastic excita-
tions, and they provide an abundance of information beneficial
for many applications [1–4]. Structural models usually involve a
significant number of parameters to be investigated. As a result,
it is of interest to determine how PSD change as structural model
parameters are varied, thereby identifying parameters exerting
the most influence on PSD, which are commonly known as ‘sensi-
tivity analysis’ [5,6]. Sensitivity analysis with respect to structural
parameters plays a fundamental role in its successful design, con-
trol and identification [7]. Sensitivity analysis can be divided into
‘local sensitivity’ and ‘global sensitivity’. The former is concerned
with the partial derivative of the PSD with respect to the model
parameters evaluated at a specific point, while the latter deals with
the variation of the PSD over a large region of parameter values [5].

Several contributions have been devoted to studying local sen-
sitivity of PSD. Among others, Marano et al. presented a stochastic
approach to define response spectra of a single-degree-of-freedom
system subjected to a nonstationary seismic excitation, following
which a new sensitivity analysis methodology was developed [8].
In double frequency domain, the formulation of analytical sensitiv-
ity statistics of various dynamic response quantities with respect

to structural parameters was developed to tackle non-stationary
earthquake motion in [9]. A numerical method for calculating the
sensitivity and Hessian matrix of the response evolutionary PSD
functions of structures subjected to evolutionary random seismic
excitation was proposed in [10,11]. The methods were formulated
based on the Pseudo-Excitation Method (PEM) [12] accompanied
by numerical integration methods such as the Gauss precise time
step approach or Newmark-b approach. More recently, three ana-
lytical methods were proposed to calculate the sensitivity and Hes-
sian matrix of PSD functions for stationary random seismic
responses [1]. The formulas were derived on the basis of Complete
Quadratic Combination method, Square Root of the Sum of Squares
method and PEM. This study highlights the advantages of PEM in
computing the sensitivity of PSD under stochastic excitation. The
method proposed by Liu to calculate the sensitivity of PSD func-
tions in [1] is new, while its derivations are rigorous.

Global sensitivity analysis (GSA) (commonly called variance-
based method) investigates the effects of simultaneous parameter
variations in the entire allowable ranges and interaction effects
among parameters on the model outputs. Measuring the impor-
tance for model parameters subjected to uncertainty, GSA main-
tains a number of advantages over local sensitivity approaches,
including model independence, capability to account for interac-
tion effect, ability to evaluate the influence of the whole parameter
space, and being able to tackle groups of parameters [13]. The GSA
is powerful and it has been widely explored in a variety of fields
[14–17]. Although GSA is a powerful tool to assess the impact of
uncertain parameters on model outputs, it remains computation-
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ally intensive, especially when applied to the large-scale and com-
plex systems [18].

It is worth mentioning that, for both local sensitivity and glo-
bal sensitivity analysis of PSD, there are some issues required to
be addressed. For local sensitivity analysis, it involves calculating
the sensitivity of frequency and mode shapes, and the eigenvec-
tor derivatives are expressed as a linear combination of the full
set of eigenvectors in [1]. Such treatment suffers from the prob-
lems of modal truncation errors and possible programming inef-
ficiency. Regarding GSA of PSD, it is still a problem rarely
reported ever before. More importantly, the high computational
cost involved in GSA restricts the usage of traditional methods
such as Monte Carlo simulation (MCS) due to the expensive-to-
run model.

To address the issues mentioned in the above, a unified consid-
eration of the computation of the local and global sensitivity anal-
ysis of PSD for stationary stochastic responses is implemented in
this study. Motivated along the direction of [1], the computational
efficiency and computational accuracy are enhanced by borrowing
the novel idea of PEM. Furthermore, by incorporating direct alge-
braic method, analytical formulae are derived to calculate the local
sensitivity of the first and the second order with respect to chosen
parameters. The formulae are compact, devoid of modal truncation
problem and efficient to program. To circumvent the issue of high
computational expense, a Gaussian process model (GPM)-based
analytical method [19] is adopted to conduct GSA of PSD in an effi-
cient manner. The validity of the presented methods is illustrated
using a numerical example.

2. Theoretical basis

2.1. Governing equilibrium equation

Consider a linear structure with nd dofs subjected to the excita-
tion of the ground horizontal acceleration time history and the
governing equilibrium equation of motion with generalized coor-
dinates xðtÞ are given by

M€xðtÞ þ C _xðtÞ þ KxðtÞ ¼ �MEu€xgðtÞ ð1Þ

where M 2 Rnd�nd , C 2 Rnd�nd and K 2 Rnd�nd are the mass, damping
and stiffness matrices; Eu is a force distributing vector composed
of zeros and ones, and €xgðtÞ is ground motion. Using the normal
coordinate transformation, the generalized coordinates xðtÞ can be
expressed as

xðtÞ ¼
Xn
j¼1

ujðtÞUj ð2Þ

where Uj denotes the j-th eigenvector of the structure, which is
normalized to be unit-mass mode shapes, i.e. UT

j MUj ¼ 1; n
denotes the number of modes, which are usually less than the
number of degrees of freedom nd in real applications. Rayleigh
damping is assumed here with C ¼ a0Mþ a1K where a0 ¼
2x1x2ðf1x2�x1f2Þ= x2

2�x2
1

� �
and a1 ¼2ðf2x2� f1x1Þ= x2

2�x2
1

� �
.

Here x1 and x2 are the first and the second natural frequency of
the structure concerned, respectively, while f1 and f2 are the first
and second damping ratios, respectively. As a result, (1) can be
decoupled to n separate equations for each of the modes. For the
j-th mode, one has

€ujðtÞ þ 2fjxj _ujðtÞ þx2
j ujðtÞ ¼ �cj€xgðtÞ ð3Þ

where fj is the j-th damping ratio, and cj is the j-th mode participa-
tion factor given by

cj ¼ UT
j MEu ð4Þ

2.2. Pseudo excitation method

In Liu’s work [1], PEM was directly employed to derive the for-
mulae of the first and second derivatives of PSD functions. Our
work will also borrow the concept from [1]. Therefore, the general
concept of PEM will be outlined in this section. Interested readers
are referred to [12]. Using PEM, stationary random response anal-
ysis as the primary concern of our study can be converted into har-
monic response analysis. The pseudo excitation of ground
acceleration is constructed as follows

€~xgðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
S€~xg ðtÞ

q
eixt ð5Þ

For the j-th mode, one has

€~ujðtÞ þ 2fjxj
_~ujðtÞ þ ~ujðtÞ ¼ �cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S€xg ðxÞ

q
eixt ð6Þ

The stationary solution of ~ujðtÞ is equal to

~ujðtÞ ¼ �cjHj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S€xg ðxÞ

q
eixt ð7Þ

where HjðxÞ is the frequency response function of the j-th mode, i.e.

HjðxÞ ¼ x2
j þ 2fjxjxi�x2

� ��1
ð8Þ

According to the PEM, the PSD matrix of the real displacement vec-
tor is equal to

SxðxÞ ¼ ~xðtÞ~x�ðtÞ

¼
Xn
j¼1

cjHjðxÞUj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S€xg ðxÞ

q
eixt

 ! Xn
j¼1

cjHjðxÞUj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S€xg ðxÞ

q
eixt

 !�

ð9Þ
Denoting that

HjðxÞ ¼ cjHjðxÞUj ð10Þ
(9) can be rearranged as

SxðxÞ ¼ S€xg ðxÞ
Xn
j¼1

HjðxÞ
 !� Xn

j¼1

HjðxÞ
 !T

ð11Þ

3. Local sensitivity analysis

3.1. Eigen-sensitivity

To calculate the sensitivity and the Hessian of PSD functions,
the first-order derivatives and the second-order derivatives of
eigenpair have to be known. For a linear and undamped structural
system with m elements and nd degrees of freedom, the expres-
sions of the first-order derivatives of eigenvalue and eigenvector
sensitivity with respect to design variable p are given by [20–24]

lðpÞ
j ¼

UðpÞ
j

kðpÞj

8<
:

9=
; ¼ K�1

U=DKj ð12Þ

where KU=D ¼ K� kjM �MUj

�UT
j M 0

� �
and Kj¼

�ðKðpÞ �kj MðpÞÞUj
12UT

j MðpÞUj

	 

.

Here the superscript denotes differentiation. kj ¼ x2
j denotes the

j-th eigenvalue.

As derived in Appendix A, one can obtain lðpqÞ
j by differentiating

lðpÞ
j with respect to design variable q,

lðpqÞ
j ¼

UðpqÞ
j

kðpqÞj

8<
:

9=
; ¼ �K�1

U=DK
ðqÞ
U=DK

�1
U=DKj þ K�1

U=DK
ðqÞ
j ð13Þ
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